If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8/3k-6/5=-4+6/7k
We move all terms to the left:
-8/3k-6/5-(-4+6/7k)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-8/3k-(6/7k-4)-6/5=0
We get rid of parentheses
-8/3k-6/7k+4-6/5=0
We calculate fractions
(-882k^2)/525k^2+(-1400k)/525k^2+(-450k)/525k^2+4=0
We multiply all the terms by the denominator
(-882k^2)+(-1400k)+(-450k)+4*525k^2=0
Wy multiply elements
(-882k^2)+2100k^2+(-1400k)+(-450k)=0
We get rid of parentheses
-882k^2+2100k^2-1400k-450k=0
We add all the numbers together, and all the variables
1218k^2-1850k=0
a = 1218; b = -1850; c = 0;
Δ = b2-4ac
Δ = -18502-4·1218·0
Δ = 3422500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3422500}=1850$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1850)-1850}{2*1218}=\frac{0}{2436} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1850)+1850}{2*1218}=\frac{3700}{2436} =1+316/609 $
| 7m+14=35 | | 6.5+1.4n=3.42 | | -4(7x-4)=100 | | 6x+20+x+4x=180 | | 5b+7=32 | | x1/3=5/2 | | 1/6n=1.5= | | 89=2(-1-8r)+3r | | 1/4h=-28 | | 8(30)-5y=24 | | 1/6n=1.5 | | 3a+7(5a-7)=-353 | | -3(-7+5x)-1=95 | | 25x+8-27x=5-7= | | Y=3(5-x);(3,6) | | -3+10y=60 | | -395=7(7k-8)=5 | | 4-4=6x+3x= | | 7(x-2)-3=25 | | Y=-x-2;(1-3) | | 5x+7=10x-4 | | 4x^2+-x-5=0 | | -3p2+7p=1 | | 6+3y=4(6)+y | | 91=-7(-2n+3) | | x/49=7/12 | | 8(3k-1)+3(1+2k)=-5 | | -3(-8r+1)=165 | | -23=-7-x | | -5(8b+1)-4=-129 | | 12/x=7/48 | | 5-p=-8 |