If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8/5k+3/5=8+4/9k
We move all terms to the left:
-8/5k+3/5-(8+4/9k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 9k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-8/5k-(4/9k+8)+3/5=0
We get rid of parentheses
-8/5k-4/9k-8+3/5=0
We calculate fractions
(-72k)/1125k^2+(-500k)/1125k^2+27k/1125k^2-8=0
We multiply all the terms by the denominator
(-72k)+(-500k)+27k-8*1125k^2=0
We add all the numbers together, and all the variables
27k+(-72k)+(-500k)-8*1125k^2=0
Wy multiply elements
-9000k^2+27k+(-72k)+(-500k)=0
We get rid of parentheses
-9000k^2+27k-72k-500k=0
We add all the numbers together, and all the variables
-9000k^2-545k=0
a = -9000; b = -545; c = 0;
Δ = b2-4ac
Δ = -5452-4·(-9000)·0
Δ = 297025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{297025}=545$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-545)-545}{2*-9000}=\frac{0}{-18000} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-545)+545}{2*-9000}=\frac{1090}{-18000} =-109/1800 $
| -5x-20=15-10x | | 42=-7(6-2x) | | (2x+15)+(x-3)=90 | | z=165/6 | | -7x/2=35 | | X/x2-36=0 | | 2(x-1)=14x= | | (4x-15)*(x-6)=684 | | (2p+1)(p+1)=0 | | 4.7a=-28.2 | | 5(5g+4)÷2=35 | | 6-8p=-98 | | 0.44n-29=20 | | 4n+5=52 | | 6(9)+5y=9+4y+38 | | (3x+15)+(2x+45)=180 | | 7h-8=-22 | | 28-d/14=27 | | (2x^2-15-50)=80 | | 156+2h=994 | | 2x+5x=8+3x | | -360-72c=6c | | 59-m=6+2 | | n-2363/272=-475/272 | | 6(3)x=90 | | 6^3x=15 | | n-811/16=-1203/272 | | k-14=+44 | | 17/8=m+4 | | 4x^2+2x=2x+100 | | 0.078-2.60x=x | | 21-5x=x+9 |