-8/9x+32=10x-3

Simple and best practice solution for -8/9x+32=10x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8/9x+32=10x-3 equation:



-8/9x+32=10x-3
We move all terms to the left:
-8/9x+32-(10x-3)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We get rid of parentheses
-8/9x-10x+3+32=0
We multiply all the terms by the denominator
-10x*9x+3*9x+32*9x-8=0
Wy multiply elements
-90x^2+27x+288x-8=0
We add all the numbers together, and all the variables
-90x^2+315x-8=0
a = -90; b = 315; c = -8;
Δ = b2-4ac
Δ = 3152-4·(-90)·(-8)
Δ = 96345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96345}=\sqrt{9*10705}=\sqrt{9}*\sqrt{10705}=3\sqrt{10705}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(315)-3\sqrt{10705}}{2*-90}=\frac{-315-3\sqrt{10705}}{-180} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(315)+3\sqrt{10705}}{2*-90}=\frac{-315+3\sqrt{10705}}{-180} $

See similar equations:

| -8(x-1)=32 | | 6x-1=16x | | x+121=4(x-5 | | 9a^2=81a | | (3x-10)+(2x+20)=90 | | 3(2x+3)=3(x-2) | | 2x/9+4/9=3 | | 2(2x+1)=6(-2+x) | | x^2-x+1.75=0 | | 9.875=x-5.25 | | 4(z-1)=29 | | y/4+8=11 | | 5-3(a+4=a-7 | | 35=5t | | X+6x-10=10x+11-4x | | 15.8=7.5+x/4 | | p+-0.6=8.4 | | 11+7a=-3 | | 5(+3/4)+x=9(+1/6) | | 23=2x-8+x+17 | | n3/4-4=-8 | | 4/s+1=9 | | 18+z=26 | | 2(a-8)=14 | | 629=d+148 | | 14=-(p-8 | | -7p-15=-15 | | 19X^2-20x+1=0 | | x/4=3x-4 | | -7p–15=-50 | | 6g-5+4g=5-10(g+2) | | 4x+20=5(x+4)-x |

Equations solver categories