-8n(n+5)=-5(8+6n)

Simple and best practice solution for -8n(n+5)=-5(8+6n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8n(n+5)=-5(8+6n) equation:



-8n(n+5)=-5(8+6n)
We move all terms to the left:
-8n(n+5)-(-5(8+6n))=0
We add all the numbers together, and all the variables
-8n(n+5)-(-5(6n+8))=0
We multiply parentheses
-8n^2-40n-(-5(6n+8))=0
We calculate terms in parentheses: -(-5(6n+8)), so:
-5(6n+8)
We multiply parentheses
-30n-40
Back to the equation:
-(-30n-40)
We get rid of parentheses
-8n^2-40n+30n+40=0
We add all the numbers together, and all the variables
-8n^2-10n+40=0
a = -8; b = -10; c = +40;
Δ = b2-4ac
Δ = -102-4·(-8)·40
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{345}}{2*-8}=\frac{10-2\sqrt{345}}{-16} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{345}}{2*-8}=\frac{10+2\sqrt{345}}{-16} $

See similar equations:

| 2x(x+10)+8=180 | | 4/5=n8 | | 20r=-18 | | 111=-4(1-6x)-x | | 6+2(x)+x=180 | | 10x+5-7x-13=4 | | 22-5x=6x-2x+67 | | 41x+3+70=77x+1 | | -3.8x=7.36-1.9x | | 4(t+4)+6=3(t-8)+12 | | 5b-4=-14 | | 26-(f=40 | | -85=-8(n+4)+3 | | 1/2x=2x3/4 | | 3+8.5x(x=4) | | (2x-4)+(4x-8)=90 | | 2.4=-2y+5.6 | | -t+4t-9=5t-23 | | -2/3+u=1/5 | | 2/9n-5=2+5/9 | | Y=3+8.5x(x=-4) | | (-3+4i)(-3-4i)=0 | | 7h+11=-4+32 | | 2(5p-3)=16p | | y/6=1.2 | | -18=-6/5w | | 2/3w-16=5/3w | | |-6p|=24 | | 12x6−36x3=0 | | 2.3x+3.2x=-16.5 | | 2/9w=-14 | | 148=-4(3+5k) |

Equations solver categories