If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8p^2+4p+10=0
a = -8; b = 4; c = +10;
Δ = b2-4ac
Δ = 42-4·(-8)·10
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{21}}{2*-8}=\frac{-4-4\sqrt{21}}{-16} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{21}}{2*-8}=\frac{-4+4\sqrt{21}}{-16} $
| 21/2+r=25/6 | | (5c+7)–(=4c+6) | | 14x=35*22 | | 3j+5+25=180 | | 12(x-6)=8(x+8) | | 15x+3x=82.5 | | -23=7y+12 | | 35x=14*22 | | 4=-9y-14 | | 8v2-8v+2=0 | | I+5(j-1)=13 | | 5f-1+46=90 | | 8-4x=27 | | 3a+4+6=2a+56= | | 86=32+d | | 14v-14=2(5-7v)+4 | | 10(x-8)=8(+12) | | x+46+70+70=180 | | x/x-3.2=5.9 | | 50+2e+80=180 | | y=3^90 | | 4x-13=7x+10 | | 8c=9c−c | | 20=2*6+2w | | 1,2/3j=15 | | -13=r/9=-12 | | 1p+59=198 | | w+17=51 | | 4x13=7x+10 | | x-9/15=-1 | | 3x+3+60+90=180 | | 1/3x+17=19 |