If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8q^2+8q+6=0
a = -8; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·(-8)·6
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*-8}=\frac{-24}{-16} =1+1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*-8}=\frac{8}{-16} =-1/2 $
| 4x-7.1=3x+2.6= | | X2-7x-144=0 | | F(x)=1/3 | | 4/10(x-4)=-2 | | 2(5-x)=4x-17-3x | | 1/2(x+5)+2x=1/7x+2 | | 8(1+7n)-1=7(1-6n) | | y-16-37=0 | | 18=162x | | (X)=7x=1 | | 7/2=m/6 | | 2d–9d=-70 | | 12/8=9/n | | 8/12=9/n | | 2x^+100=0 | | 44=9q+2q | | 8/12=n/9 | | 8(u+4)=80 | | 20=11+w | | -4-7x=-16-3x | | 6=6p–3p | | 50.5(6n+14)=3 | | 3.62w=1.6w+24 | | 8((1+7n)-1=7(1-6n) | | (2x-9)-(3x-8)=14 | | 0=q3 | | 3+2x=2x-4x-13 | | 2(3x-7=16+6x | | 12=4b+8 | | 8(-x+3)=8(-3x-5) | | -2m-29=-8(m-1)-7 | | 120+x+60+15+20=30+35+2x+0 |