-8v(1+6v)-7(v-5)=

Simple and best practice solution for -8v(1+6v)-7(v-5)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8v(1+6v)-7(v-5)= equation:


Simplifying
-8v(1 + 6v) + -7(v + -5) = 0
(1 * -8v + 6v * -8v) + -7(v + -5) = 0
(-8v + -48v2) + -7(v + -5) = 0

Reorder the terms:
-8v + -48v2 + -7(-5 + v) = 0
-8v + -48v2 + (-5 * -7 + v * -7) = 0
-8v + -48v2 + (35 + -7v) = 0

Reorder the terms:
35 + -8v + -7v + -48v2 = 0

Combine like terms: -8v + -7v = -15v
35 + -15v + -48v2 = 0

Solving
35 + -15v + -48v2 = 0

Solving for variable 'v'.

Begin completing the square.  Divide all terms by
-48 the coefficient of the squared term: 

Divide each side by '-48'.
-0.7291666667 + 0.3125v + v2 = 0

Move the constant term to the right:

Add '0.7291666667' to each side of the equation.
-0.7291666667 + 0.3125v + 0.7291666667 + v2 = 0 + 0.7291666667

Reorder the terms:
-0.7291666667 + 0.7291666667 + 0.3125v + v2 = 0 + 0.7291666667

Combine like terms: -0.7291666667 + 0.7291666667 = 0.0000000000
0.0000000000 + 0.3125v + v2 = 0 + 0.7291666667
0.3125v + v2 = 0 + 0.7291666667

Combine like terms: 0 + 0.7291666667 = 0.7291666667
0.3125v + v2 = 0.7291666667

The v term is 0.3125v.  Take half its coefficient (0.15625).
Square it (0.0244140625) and add it to both sides.

Add '0.0244140625' to each side of the equation.
0.3125v + 0.0244140625 + v2 = 0.7291666667 + 0.0244140625

Reorder the terms:
0.0244140625 + 0.3125v + v2 = 0.7291666667 + 0.0244140625

Combine like terms: 0.7291666667 + 0.0244140625 = 0.7535807292
0.0244140625 + 0.3125v + v2 = 0.7535807292

Factor a perfect square on the left side:
(v + 0.15625)(v + 0.15625) = 0.7535807292

Calculate the square root of the right side: 0.868090277

Break this problem into two subproblems by setting 
(v + 0.15625) equal to 0.868090277 and -0.868090277.

Subproblem 1

v + 0.15625 = 0.868090277 Simplifying v + 0.15625 = 0.868090277 Reorder the terms: 0.15625 + v = 0.868090277 Solving 0.15625 + v = 0.868090277 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.15625' to each side of the equation. 0.15625 + -0.15625 + v = 0.868090277 + -0.15625 Combine like terms: 0.15625 + -0.15625 = 0.00000 0.00000 + v = 0.868090277 + -0.15625 v = 0.868090277 + -0.15625 Combine like terms: 0.868090277 + -0.15625 = 0.711840277 v = 0.711840277 Simplifying v = 0.711840277

Subproblem 2

v + 0.15625 = -0.868090277 Simplifying v + 0.15625 = -0.868090277 Reorder the terms: 0.15625 + v = -0.868090277 Solving 0.15625 + v = -0.868090277 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.15625' to each side of the equation. 0.15625 + -0.15625 + v = -0.868090277 + -0.15625 Combine like terms: 0.15625 + -0.15625 = 0.00000 0.00000 + v = -0.868090277 + -0.15625 v = -0.868090277 + -0.15625 Combine like terms: -0.868090277 + -0.15625 = -1.024340277 v = -1.024340277 Simplifying v = -1.024340277

Solution

The solution to the problem is based on the solutions from the subproblems. v = {0.711840277, -1.024340277}

See similar equations:

| 6x+21=13x-49 | | 2x+13=-13 | | 6x+5+x= | | 8x+12=-132 | | 9x-34=3x+2 | | 6p+1=(2p+1) | | 8(1+3n)+n(-4n+4)= | | 11x+1=9x+15 | | 4(5+4n)-3(1+6n)= | | 5x-5=50 | | 2x+4(-6+10)=-16x+4(-8-14) | | n(-8n+8)+5(n-1)= | | -7m(3m+7)+3(m+1)= | | -4-0.7m=2.3 | | 75=-5(a+5) | | -4p(2p+2)+4p(2-2p)= | | 6.5=2x+4.1 | | 3(x+8)=-6 | | 6(-3+8x)-(3x-3)= | | 3(6+x)=27 | | 2(11-4x)=38 | | -3(7r-6)+8(5r+5)= | | 24-(-21)+7-(-3)= | | 5k(3k-3)+6k(1-6k)= | | 19x-69=45 | | 14x-6-11x=21 | | n-3(5-8n)= | | -6(4-v)-2v= | | n-10+9+9n= | | -8(1-8x)-4= | | 2(-x-1)+8x= | | -90-36= |

Equations solver categories