-8x+2/3x+4=2x-5-x

Simple and best practice solution for -8x+2/3x+4=2x-5-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8x+2/3x+4=2x-5-x equation:



-8x+2/3x+4=2x-5-x
We move all terms to the left:
-8x+2/3x+4-(2x-5-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-8x+2/3x-(x-5)+4=0
We get rid of parentheses
-8x+2/3x-x+5+4=0
We multiply all the terms by the denominator
-8x*3x-x*3x+5*3x+4*3x+2=0
Wy multiply elements
-24x^2-3x^2+15x+12x+2=0
We add all the numbers together, and all the variables
-27x^2+27x+2=0
a = -27; b = 27; c = +2;
Δ = b2-4ac
Δ = 272-4·(-27)·2
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{105}}{2*-27}=\frac{-27-3\sqrt{105}}{-54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{105}}{2*-27}=\frac{-27+3\sqrt{105}}{-54} $

See similar equations:

| 3m=2+39 | | 4K+14=3k+7 | | 90+x-11+x+13=180 | | 7×m=01 | | 7h=-(2h-18)= | | 4(x-6)-8=6x-4 | | y/6-12=-32 | | 6-7x=-10x | | (x-20)+2x=90 | | 2a+3a+1=26 | | 4K+7=3k+7 | | 3n+1=16n | | x-2+x-2+90=180 | | x-5+7x-4=27 | | 10a+3a-11a-a=19 | | 955=-16t^2 | | 3m=2+32 | | 10(6x+9)=90 | | 31+x-15+90=180 | | -50-n=110 | | -4x+0=-3.6 | | x−1=1 | | 6(7x+6)=-48 | | -3(a+2)=21 | | 90+x+2+x+2=180 | | 5(3k-5)=30 | | 24x+96=(3x+12) | | 88+n=54 | | 1/4a-3+6=24 | | 90+x-53+x-53=180 | | 8x+14=35 | | 90+x-46+x-46=180 |

Equations solver categories