If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x-15x^2=0
a = -15; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-15)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-15}=\frac{0}{-30} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-15}=\frac{16}{-30} =-8/15 $
| .008y+3=3.8 | | -17+9f=17+7f | | N-2+5=-9-n | | -4p-7+4p=9+2p | | 7+k+3k=1+6k | | -3m-7+6m=2+4m | | 12k-6=2(4k+3) | | -5j=-4j+9 | | -4a-2(a-1)=-4a+8 | | 6s-10=4+8s | | 8+2x/3=20 | | 161=3x+4x | | -440+-9x+x3=0 | | -5x^2-20x+25=0 | | 6-2p=-p | | 1/2m+3=-15 | | -8x-16=-8x-8x | | 3-9x=31-(9x+28) | | 1+7d=8d+10 | | (x+3)(x)(x-3)=440 | | 126+3y=2(4y+8)+2(4y+3) | | X^4-12x^2-16x-48=0 | | 1/2x+4=-14 | | -10+7s=8s | | 5x^2=25-20x | | 2p-4=18 | | 5q=-10+4q | | 3x+4x=114 | | 4p-6=7p | | 2(x-2)+x(x+3)=-x+3 | | -5x-5+3x-7=0 | | 2(7+3b)=-5(-2b+2) |