-9(n+4)=-5n(4n+36)

Simple and best practice solution for -9(n+4)=-5n(4n+36) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9(n+4)=-5n(4n+36) equation:



-9(n+4)=-5n(4n+36)
We move all terms to the left:
-9(n+4)-(-5n(4n+36))=0
We multiply parentheses
-9n-(-5n(4n+36))-36=0
We calculate terms in parentheses: -(-5n(4n+36)), so:
-5n(4n+36)
We multiply parentheses
-20n^2-180n
Back to the equation:
-(-20n^2-180n)
We get rid of parentheses
20n^2+180n-9n-36=0
We add all the numbers together, and all the variables
20n^2+171n-36=0
a = 20; b = 171; c = -36;
Δ = b2-4ac
Δ = 1712-4·20·(-36)
Δ = 32121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32121}=\sqrt{9*3569}=\sqrt{9}*\sqrt{3569}=3\sqrt{3569}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(171)-3\sqrt{3569}}{2*20}=\frac{-171-3\sqrt{3569}}{40} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(171)+3\sqrt{3569}}{2*20}=\frac{-171+3\sqrt{3569}}{40} $

See similar equations:

| 7m-3m=20 | | -5(-4+x)=64 | | 35+6x=-13 | | 7m−3m=20 | | -14=1-8b-7 | | 7m+-4m+-3m-m+3m=-14 | | 6k+2k-7k=12 | | 6k+2k-7k=13 | | 60-6x=90-18x | | 8d+-5d+-9d+4d=-14 | | 45-5y=7 | | 7u-34=-3(3-4u) | | 4(x-2)^2=4 | | 19y-13y-y+y-4y=18 | | 5s-4s+2s=15 | | 10n-5n=25 | | x^2+16=-5x^2 | | 2.3+j=5.2 | | 48+16y=8 | | 5u+3u+4u-8u-3u=14 | | -5(8n+6)=-150 | | -9z+13z=-8 | | (6)5x=5 | | -5+h=13 | | 14t+3t+3t+4t-23t=14 | | 1=-10=r | | 40+46.45x=51.45x | | g-8g+5g+-g=15 | | 3=7.5x-5 | | -17j+17j+3j=6 | | 9/16=p/100 | | 2u-2u+5u=20 |

Equations solver categories