-9(v+3)2v+7=5v+12

Simple and best practice solution for -9(v+3)2v+7=5v+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9(v+3)2v+7=5v+12 equation:


Simplifying
-9(v + 3) * 2v + 7 = 5v + 12

Reorder the terms:
-9(3 + v) * 2v + 7 = 5v + 12

Reorder the terms for easier multiplication:
-9 * 2v(3 + v) + 7 = 5v + 12

Multiply -9 * 2
-18v(3 + v) + 7 = 5v + 12
(3 * -18v + v * -18v) + 7 = 5v + 12
(-54v + -18v2) + 7 = 5v + 12

Reorder the terms:
7 + -54v + -18v2 = 5v + 12

Reorder the terms:
7 + -54v + -18v2 = 12 + 5v

Solving
7 + -54v + -18v2 = 12 + 5v

Solving for variable 'v'.

Reorder the terms:
7 + -12 + -54v + -5v + -18v2 = 12 + 5v + -12 + -5v

Combine like terms: 7 + -12 = -5
-5 + -54v + -5v + -18v2 = 12 + 5v + -12 + -5v

Combine like terms: -54v + -5v = -59v
-5 + -59v + -18v2 = 12 + 5v + -12 + -5v

Reorder the terms:
-5 + -59v + -18v2 = 12 + -12 + 5v + -5v

Combine like terms: 12 + -12 = 0
-5 + -59v + -18v2 = 0 + 5v + -5v
-5 + -59v + -18v2 = 5v + -5v

Combine like terms: 5v + -5v = 0
-5 + -59v + -18v2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(5 + 59v + 18v2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(5 + 59v + 18v2)' equal to zero and attempt to solve: Simplifying 5 + 59v + 18v2 = 0 Solving 5 + 59v + 18v2 = 0 Begin completing the square. Divide all terms by 18 the coefficient of the squared term: Divide each side by '18'. 0.2777777778 + 3.277777778v + v2 = 0 Move the constant term to the right: Add '-0.2777777778' to each side of the equation. 0.2777777778 + 3.277777778v + -0.2777777778 + v2 = 0 + -0.2777777778 Reorder the terms: 0.2777777778 + -0.2777777778 + 3.277777778v + v2 = 0 + -0.2777777778 Combine like terms: 0.2777777778 + -0.2777777778 = 0.0000000000 0.0000000000 + 3.277777778v + v2 = 0 + -0.2777777778 3.277777778v + v2 = 0 + -0.2777777778 Combine like terms: 0 + -0.2777777778 = -0.2777777778 3.277777778v + v2 = -0.2777777778 The v term is 3.277777778v. Take half its coefficient (1.638888889). Square it (2.685956790) and add it to both sides. Add '2.685956790' to each side of the equation. 3.277777778v + 2.685956790 + v2 = -0.2777777778 + 2.685956790 Reorder the terms: 2.685956790 + 3.277777778v + v2 = -0.2777777778 + 2.685956790 Combine like terms: -0.2777777778 + 2.685956790 = 2.4081790122 2.685956790 + 3.277777778v + v2 = 2.4081790122 Factor a perfect square on the left side: (v + 1.638888889)(v + 1.638888889) = 2.4081790122 Calculate the square root of the right side: 1.551830858 Break this problem into two subproblems by setting (v + 1.638888889) equal to 1.551830858 and -1.551830858.

Subproblem 1

v + 1.638888889 = 1.551830858 Simplifying v + 1.638888889 = 1.551830858 Reorder the terms: 1.638888889 + v = 1.551830858 Solving 1.638888889 + v = 1.551830858 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.638888889' to each side of the equation. 1.638888889 + -1.638888889 + v = 1.551830858 + -1.638888889 Combine like terms: 1.638888889 + -1.638888889 = 0.000000000 0.000000000 + v = 1.551830858 + -1.638888889 v = 1.551830858 + -1.638888889 Combine like terms: 1.551830858 + -1.638888889 = -0.087058031 v = -0.087058031 Simplifying v = -0.087058031

Subproblem 2

v + 1.638888889 = -1.551830858 Simplifying v + 1.638888889 = -1.551830858 Reorder the terms: 1.638888889 + v = -1.551830858 Solving 1.638888889 + v = -1.551830858 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.638888889' to each side of the equation. 1.638888889 + -1.638888889 + v = -1.551830858 + -1.638888889 Combine like terms: 1.638888889 + -1.638888889 = 0.000000000 0.000000000 + v = -1.551830858 + -1.638888889 v = -1.551830858 + -1.638888889 Combine like terms: -1.551830858 + -1.638888889 = -3.190719747 v = -3.190719747 Simplifying v = -3.190719747

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-0.087058031, -3.190719747}

Solution

v = {-0.087058031, -3.190719747}

See similar equations:

| 9.8x+26.39=-10.2x+25.09 | | 4x^2=6x+1 | | x^2-15x+23=0 | | 6m^2+26m=20 | | r^2-r-20= | | 5h-7=5(h+2)+3 | | 0.03(3c-81)=-0.9(c-5) | | (v+9)(v-6)=0 | | 2x+17=81 | | 4x-40=7(2x+2) | | 1/2*4/5= | | -(-x)x=166 | | 13+5(3C-2)= | | -0.12(x-2006)=14y-2.8 | | -14y=-182 | | y^2+4-36=0 | | y+4-36=0 | | 7x+56=y+2x | | 2+4*9= | | 2s-6s=36 | | 12x=11x-31 | | (2x+7)+(5x+3)= | | 0.7n-1.538=2n-0.4n | | 2x^2-25x+37=0 | | 7(3x-1)+4(10x-3x)-2(4x+4)=-1 | | X^2+2x+1=63+1 | | 4q+18+11q= | | -11x(-15)= | | 12(X+8)=4(x+8) | | v=lwg | | -3(8p+6)-2(4-23p)-3(3+7p)=0 | | 1=y-8 |

Equations solver categories