If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9.3z-z(2+1/3)+(-2/3)=z
We move all terms to the left:
-9.3z-z(2+1/3)+(-2/3)-(z)=0
We add all the numbers together, and all the variables
-9.3z-z(1/3+2)-z+(-2/3)=0
We add all the numbers together, and all the variables
-10.3z-z(1/3+2)+(-2/3)=0
We multiply parentheses
-z^2-10.3z-2z+(-2/3)=0
We get rid of parentheses
-z^2-10.3z-2z-2/3=0
We multiply all the terms by the denominator
-z^2*3-(10.3z)*3-2z*3-2=0
We add all the numbers together, and all the variables
-z^2*3-(+10.3z)*3-2z*3-2=0
We multiply parentheses
-z^2*3-30z-2z*3-2=0
Wy multiply elements
-3z^2-30z-6z-2=0
We add all the numbers together, and all the variables
-3z^2-36z-2=0
a = -3; b = -36; c = -2;
Δ = b2-4ac
Δ = -362-4·(-3)·(-2)
Δ = 1272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1272}=\sqrt{4*318}=\sqrt{4}*\sqrt{318}=2\sqrt{318}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{318}}{2*-3}=\frac{36-2\sqrt{318}}{-6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{318}}{2*-3}=\frac{36+2\sqrt{318}}{-6} $
| 6a-8=a-6 | | 57=3(n-67) | | 6a-8=4a-6 | | x+25=2x-14 | | 136=4(7)(4)+2(4)(x) | | 7x+19=2x-6 | | 3=48-g | | 6r+2=r | | 4g+6=2g+26 | | 24=28-9x+13 | | 12x+8-5x-6=0 | | 150+2x=360 | | -8x+5=-8x+1/2 | | 9x+48=-3 | | 4x-9=-11x | | 37a+12+14a-9=11-14+5a | | -5x+1=-5x-9/7 | | (7a/8-)5=2(a+1) | | (u-28)+u=u+44 | | 30x=1526 | | 10y-5y-15=65.35 | | 2(r-3)+6r=4(r-10)+2r+8 | | 200m-125m+53075=56100-200m | | 10y-5y-15=65.35. | | 2400=2x+2x(0.33x) | | -1/3x+24=-2x+4 | | 10y-5y=65.35. | | 4x-23+2x+7=180 | | 2/3x+7/5=15 | | 11=5n-24 | | 8(r-92)=56 | | 25x-8=11x-140 |