If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9.8t(.5t+1)+39.2=0
We multiply parentheses
-9t^2-9t+39.2=0
a = -9; b = -9; c = +39.2;
Δ = b2-4ac
Δ = -92-4·(-9)·39.2
Δ = 1492.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{1492.2}}{2*-9}=\frac{9-\sqrt{1492.2}}{-18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{1492.2}}{2*-9}=\frac{9+\sqrt{1492.2}}{-18} $
| (15(x-3))/5=3(2x-3) | | 6a+4=5a+9 | | u-1.36=3.86 | | 3c-1=-6c+44 | | -3x=-11+8x | | 4-6w=3(1/2+w/3) | | 7x+15x-12=20 | | 9x+6=-8+x | | 5+3=4(d) | | 20a=2a+54 | | 3x-10+2x+15=20 | | 3z-6(z+9)=4(z-3)-21 | | 6a+10=2a-30 | | 3z+3-2z=-8z-9z | | 6y=70+y | | 71.4=7(m+3,4) | | 4+6x=-1+1 | | 74.2=7(m+3.9) | | 3a+6=16 | | -4=z+1÷2 | | 10-v=202 | | (x-4)(x-1)(2x)=40 | | 5z-5(z+2)=2(z-2)-14 | | 2d-10d=48 | | 2/3/4=x/12 | | 78.4=8(m+2.6) | | 75.6=9(m+2.1) | | 62.3u-9.12=25u-3 | | x(3x+1)(x+4)=0 | | 1470=(x+25)14 | | 9=6+3/10y | | e+6=9.6 |