-9/4v+4/5v=7/8

Simple and best practice solution for -9/4v+4/5v=7/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9/4v+4/5v=7/8 equation:



-9/4v+4/5v=7/8
We move all terms to the left:
-9/4v+4/5v-(7/8)=0
Domain of the equation: 4v!=0
v!=0/4
v!=0
v∈R
Domain of the equation: 5v!=0
v!=0/5
v!=0
v∈R
We add all the numbers together, and all the variables
-9/4v+4/5v-(+7/8)=0
We get rid of parentheses
-9/4v+4/5v-7/8=0
We calculate fractions
(-700v^2)/1280v^2+(-2880v)/1280v^2+1024v/1280v^2=0
We multiply all the terms by the denominator
(-700v^2)+(-2880v)+1024v=0
We add all the numbers together, and all the variables
(-700v^2)+1024v+(-2880v)=0
We get rid of parentheses
-700v^2+1024v-2880v=0
We add all the numbers together, and all the variables
-700v^2-1856v=0
a = -700; b = -1856; c = 0;
Δ = b2-4ac
Δ = -18562-4·(-700)·0
Δ = 3444736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3444736}=1856$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1856)-1856}{2*-700}=\frac{0}{-1400} =0 $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1856)+1856}{2*-700}=\frac{3712}{-1400} =-2+114/175 $

See similar equations:

| X+3*2x-4=22 | | 1⁄2x+6=11 | | 8p+7=-65 | | s*7-22=174 | | x^2-21x+216=0 | | A=12/c | | 4z/7-7=-6 | | 2x-2x^2+40=0 | | 1/4x+20=23 | | 5m+9=12 | | (3x-2)(x+3)=(2x+9)(x-1)+7 | | .1/2(8x+26)=13+4x | | 6x+14=4(x+9) | | 12-8n=8-10 | | 6x+19=4(x+9) | | (X-2)(x-2)=3(2x-3)(2-x) | | 7x-17=28-2x | | (2x-1)(x+1)=4(1+x)(1-x)-6x | | 5x=30*5 | | 2/x(x)+3x-2=1 | | 5*5x=80 | | 8/x-5=x+2 | | 5x=80/5 | | 5x=80-5 | | 3z/10-9=5 | | 5x/5=80 | | 5x*5=80 | | 3x+1.257=40 | | 8x-23=3x+27 | | (2x+3)(2x+3)=5(2x+3) | | K-3=3k-5 | | (X-3)(x-3)=7(x-3) |

Equations solver categories