If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9/5k+-8/9=-4-1/7k
We move all terms to the left:
-9/5k+-8/9-(-4-1/7k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-9/5k-(-1/7k-4)+-8/9=0
We add all the numbers together, and all the variables
-9/5k-(-1/7k-4)-8/9=0
We get rid of parentheses
-9/5k+1/7k+4-8/9=0
We calculate fractions
(-1960k^2)/2835k^2+(-5103k)/2835k^2+405k/2835k^2+4=0
We multiply all the terms by the denominator
(-1960k^2)+(-5103k)+405k+4*2835k^2=0
We add all the numbers together, and all the variables
(-1960k^2)+405k+(-5103k)+4*2835k^2=0
Wy multiply elements
(-1960k^2)+11340k^2+405k+(-5103k)=0
We get rid of parentheses
-1960k^2+11340k^2+405k-5103k=0
We add all the numbers together, and all the variables
9380k^2-4698k=0
a = 9380; b = -4698; c = 0;
Δ = b2-4ac
Δ = -46982-4·9380·0
Δ = 22071204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22071204}=4698$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4698)-4698}{2*9380}=\frac{0}{18760} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4698)+4698}{2*9380}=\frac{9396}{18760} =2349/4690 $
| 4x-46=19 | | x+38=3x=90 | | 8h+8-5h+11=3h-1+10h | | 2x23/8=x | | 7e=-28 | | 8x=19,683 | | 12x+18=4x+2 | | 5k^2-40k=10 | | (9+m)(-m+9)=(9+m)(−m+9) | | 2x+17=6x+25 | | 8(8b+4)=96 | | 0.7x^2=6x^2-9.6 | | 8(2x-7)=-184 | | 2(m-10)-4m+5=27 | | 4(2+3r)+5=−3+4r | | 20+t=17 | | (n)/(n+2)=(8)/(n^2-4)+3 | | x+5/6=5/3+x-7/4 | | 2x/3=3x+34 | | 5x+16=9x–32 | | 12(2l+11)=12(2l+12) | | j3.87=7 | | 2*1.5=y | | y=1.5*2 | | 3x+5/2x+1=1 | | 90+(7x-20)+(4x)=180 | | 2÷1.5=y | | 1/8c=10 | | 3x-7=9x+47 | | -.333333333333333333=j/4-10/3 | | -3(2+x)=-33 | | (d)/(d+3)=(18)/(d^2-9)+4 |