If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9/5k-1/8=-5-6/7k
We move all terms to the left:
-9/5k-1/8-(-5-6/7k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-9/5k-(-6/7k-5)-1/8=0
We get rid of parentheses
-9/5k+6/7k+5-1/8=0
We calculate fractions
(-245k^2)/2240k^2+(-4032k)/2240k^2+1920k/2240k^2+5=0
We multiply all the terms by the denominator
(-245k^2)+(-4032k)+1920k+5*2240k^2=0
We add all the numbers together, and all the variables
(-245k^2)+1920k+(-4032k)+5*2240k^2=0
Wy multiply elements
(-245k^2)+11200k^2+1920k+(-4032k)=0
We get rid of parentheses
-245k^2+11200k^2+1920k-4032k=0
We add all the numbers together, and all the variables
10955k^2-2112k=0
a = 10955; b = -2112; c = 0;
Δ = b2-4ac
Δ = -21122-4·10955·0
Δ = 4460544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4460544}=2112$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2112)-2112}{2*10955}=\frac{0}{21910} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2112)+2112}{2*10955}=\frac{4224}{21910} =2112/10955 $
| 15+18=+1h-19 | | 2w+2(2w+5)=26 | | -6(3x-9)=-18x-15 | | 4f+3(2f-3)=27 | | 6(1x+2)+4(1x+2)=36 | | 2x+3,x=5 | | 0.7x+1.42=0.5x+0.62 | | 25^x-6(5^x)+5=0 | | 1/2(8b+14)=4b+7 | | 6p+2=4p+10 | | 9x-(3x+4)=7x-49 | | (x+3)ˆ2=81 | | -181=-7(9x-9)+2x | | 7x-10x-6=4x+40 | | 9m-6=-6-3m-m | | x+3,x=2 | | 10x-3x+9=58 | | 5h+4=10h+8 | | -4u+7=9(u+8) | | 2x.5=8x+4 | | -3(4x-2)=15 | | 14x-18=-1x+4 | | 150=(-16x^2)+120x+3 | | 14x-18=-1x | | 0.6x-0.2=0.5x+0.6 | | -5(3y+3)-11=6(y+7)+3y | | 12c=4c+16 | | 2p+10=2p+3 | | 7=x-(-12) | | (-12)-x=7 | | 2y+39=35+7y | | -7(36+3)+(22b-4)=0 |