If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9n+n2=0
We add all the numbers together, and all the variables
n^2-9n=0
a = 1; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*1}=\frac{0}{2} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*1}=\frac{18}{2} =9 $
| 23w=34 | | 44y=972+17y | | 12x-20-5x=3x+32-x | | w/5=0.7 | | 32^(x-1)-4x=0 | | t/4=18 | | 32^(x-1)=4x | | 3r+5-9r=7r+2 | | 3/w=18.75 | | 5x+x2=0 | | 4x+2(x+5)=23 | | 78=8.50m+27 | | b−1/6=21/2 | | 13c=38 | | b2-25=0 | | 15+c=102 | | 3x-27=10x+1 | | 148-2x=50 | | 15(1/3)s=5 | | 190=x(1.5)+175 | | 3x+-9=30 | | 1.02(t+–5)−2.4=0.66 | | 3=(4j+2+3j) | | 175=x(1.5)+190 | | m2-100=0 | | b2-81=0 | | -1+14x+12x+17x=90 | | w2-36=0 | | 2w-1/2=4w-3/4 | | 2a+5=4+ | | 2x+2x+4=x+x+14 | | 6•4d=32 |