If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9t^2+50=0
a = -9; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-9)·50
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*-9}=\frac{0-30\sqrt{2}}{-18} =-\frac{30\sqrt{2}}{-18} =-\frac{5\sqrt{2}}{-3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*-9}=\frac{0+30\sqrt{2}}{-18} =\frac{30\sqrt{2}}{-18} =\frac{5\sqrt{2}}{-3} $
| 5x+11=-2x+60 | | 9/2x=6 | | 2x+9=7x-46 | | 2(y−3)=6 | | 250-20x+3x^2=0 | | 4(x−7)+1=4x−27 | | 90=8+2n | | -3x+7(-6)=-18 | | 8r-320=60r-240 | | 83x+P=83x+Q83 | | 9-7y=-12 | | 3h−h=8 | | 2x+-39=-36 | | x+8-4=-6 | | -5x-8(-6)=13 | | -2/v= 1 | | 12x-17x=-30 | | -2v= 1 | | 2x+7=1/5x-2 | | g+3g=20 | | ,2a-5=-3a | | 0.5^x=1.6 | | 56+4w=12w | | 5x+2x=-2x+6 | | 19x+2.50=14+3.75x | | -190-d=1.75 | | 7x-(-7)=14 | | 6x-15=1-3(4x+5) | | -x+2(7)=-21 | | Y-(-5)=-4(x-3) | | Y-(-5)=-4(x-3 | | 21/9=x/6= |