-9v(v+2)+2v+6=5v+8

Simple and best practice solution for -9v(v+2)+2v+6=5v+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9v(v+2)+2v+6=5v+8 equation:


Simplifying
-9v(v + 2) + 2v + 6 = 5v + 8

Reorder the terms:
-9v(2 + v) + 2v + 6 = 5v + 8
(2 * -9v + v * -9v) + 2v + 6 = 5v + 8
(-18v + -9v2) + 2v + 6 = 5v + 8

Reorder the terms:
6 + -18v + 2v + -9v2 = 5v + 8

Combine like terms: -18v + 2v = -16v
6 + -16v + -9v2 = 5v + 8

Reorder the terms:
6 + -16v + -9v2 = 8 + 5v

Solving
6 + -16v + -9v2 = 8 + 5v

Solving for variable 'v'.

Reorder the terms:
6 + -8 + -16v + -5v + -9v2 = 8 + 5v + -8 + -5v

Combine like terms: 6 + -8 = -2
-2 + -16v + -5v + -9v2 = 8 + 5v + -8 + -5v

Combine like terms: -16v + -5v = -21v
-2 + -21v + -9v2 = 8 + 5v + -8 + -5v

Reorder the terms:
-2 + -21v + -9v2 = 8 + -8 + 5v + -5v

Combine like terms: 8 + -8 = 0
-2 + -21v + -9v2 = 0 + 5v + -5v
-2 + -21v + -9v2 = 5v + -5v

Combine like terms: 5v + -5v = 0
-2 + -21v + -9v2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(2 + 21v + 9v2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(2 + 21v + 9v2)' equal to zero and attempt to solve: Simplifying 2 + 21v + 9v2 = 0 Solving 2 + 21v + 9v2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.2222222222 + 2.333333333v + v2 = 0 Move the constant term to the right: Add '-0.2222222222' to each side of the equation. 0.2222222222 + 2.333333333v + -0.2222222222 + v2 = 0 + -0.2222222222 Reorder the terms: 0.2222222222 + -0.2222222222 + 2.333333333v + v2 = 0 + -0.2222222222 Combine like terms: 0.2222222222 + -0.2222222222 = 0.0000000000 0.0000000000 + 2.333333333v + v2 = 0 + -0.2222222222 2.333333333v + v2 = 0 + -0.2222222222 Combine like terms: 0 + -0.2222222222 = -0.2222222222 2.333333333v + v2 = -0.2222222222 The v term is 2.333333333v. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333v + 1.361111112 + v2 = -0.2222222222 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333v + v2 = -0.2222222222 + 1.361111112 Combine like terms: -0.2222222222 + 1.361111112 = 1.1388888898 1.361111112 + 2.333333333v + v2 = 1.1388888898 Factor a perfect square on the left side: (v + 1.166666667)(v + 1.166666667) = 1.1388888898 Calculate the square root of the right side: 1.067187373 Break this problem into two subproblems by setting (v + 1.166666667) equal to 1.067187373 and -1.067187373.

Subproblem 1

v + 1.166666667 = 1.067187373 Simplifying v + 1.166666667 = 1.067187373 Reorder the terms: 1.166666667 + v = 1.067187373 Solving 1.166666667 + v = 1.067187373 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + v = 1.067187373 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + v = 1.067187373 + -1.166666667 v = 1.067187373 + -1.166666667 Combine like terms: 1.067187373 + -1.166666667 = -0.099479294 v = -0.099479294 Simplifying v = -0.099479294

Subproblem 2

v + 1.166666667 = -1.067187373 Simplifying v + 1.166666667 = -1.067187373 Reorder the terms: 1.166666667 + v = -1.067187373 Solving 1.166666667 + v = -1.067187373 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + v = -1.067187373 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + v = -1.067187373 + -1.166666667 v = -1.067187373 + -1.166666667 Combine like terms: -1.067187373 + -1.166666667 = -2.23385404 v = -2.23385404 Simplifying v = -2.23385404

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-0.099479294, -2.23385404}

Solution

v = {-0.099479294, -2.23385404}

See similar equations:

| 1.4(2x-1)+1.4=0.7(4x-10)+7 | | y=-1800+30x | | -9+8k=7-4k | | x^2+10x-264=0 | | 3358=39c-17 | | -3(-9+5X)=-93 | | 7x-2=53-2x | | 7x+4x+3+7=6x+3+4x | | 3x+7=2(x+5)-(3-x) | | 8x^3-3x+12(11x^2-3x)= | | 8x-7+x-11=90 | | 9x^2+12x-3=0 | | w^2-4w-21= | | .143(8t-8)=t+.571 | | 9(n-6)+2(n-3)= | | 10(35x-175)=-70+14x | | 6(4X+10)=228 | | 2.7x-1.8y=4.5 | | 9(2m-3)-4(5+3m)-5(4+m)=-3 | | 2n^3-26n^2+72n=0 | | y=1800-30x | | 3y-2y+1=21 | | (15b^2-6B)+(-3B+B)-(B^2-1)=0 | | 3v^2(8v^2+10vb^2-7b^2)= | | x-14=3x+2 | | 8.3z=4.1z+10.5 | | 32-(x+9)=9x-7 | | 0.66666(x-3)+6=0.1666(4x+24) | | 3(8-3x)=5(2+x) | | 14+3Z=6Z-8Z-16 | | v^2+2v-8= | | .66667x-4x+2.66667=1.3333 |

Equations solver categories