-9v(v+2)+4v+5=5v+10

Simple and best practice solution for -9v(v+2)+4v+5=5v+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9v(v+2)+4v+5=5v+10 equation:


Simplifying
-9v(v + 2) + 4v + 5 = 5v + 10

Reorder the terms:
-9v(2 + v) + 4v + 5 = 5v + 10
(2 * -9v + v * -9v) + 4v + 5 = 5v + 10
(-18v + -9v2) + 4v + 5 = 5v + 10

Reorder the terms:
5 + -18v + 4v + -9v2 = 5v + 10

Combine like terms: -18v + 4v = -14v
5 + -14v + -9v2 = 5v + 10

Reorder the terms:
5 + -14v + -9v2 = 10 + 5v

Solving
5 + -14v + -9v2 = 10 + 5v

Solving for variable 'v'.

Reorder the terms:
5 + -10 + -14v + -5v + -9v2 = 10 + 5v + -10 + -5v

Combine like terms: 5 + -10 = -5
-5 + -14v + -5v + -9v2 = 10 + 5v + -10 + -5v

Combine like terms: -14v + -5v = -19v
-5 + -19v + -9v2 = 10 + 5v + -10 + -5v

Reorder the terms:
-5 + -19v + -9v2 = 10 + -10 + 5v + -5v

Combine like terms: 10 + -10 = 0
-5 + -19v + -9v2 = 0 + 5v + -5v
-5 + -19v + -9v2 = 5v + -5v

Combine like terms: 5v + -5v = 0
-5 + -19v + -9v2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(5 + 19v + 9v2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(5 + 19v + 9v2)' equal to zero and attempt to solve: Simplifying 5 + 19v + 9v2 = 0 Solving 5 + 19v + 9v2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.5555555556 + 2.111111111v + v2 = 0 Move the constant term to the right: Add '-0.5555555556' to each side of the equation. 0.5555555556 + 2.111111111v + -0.5555555556 + v2 = 0 + -0.5555555556 Reorder the terms: 0.5555555556 + -0.5555555556 + 2.111111111v + v2 = 0 + -0.5555555556 Combine like terms: 0.5555555556 + -0.5555555556 = 0.0000000000 0.0000000000 + 2.111111111v + v2 = 0 + -0.5555555556 2.111111111v + v2 = 0 + -0.5555555556 Combine like terms: 0 + -0.5555555556 = -0.5555555556 2.111111111v + v2 = -0.5555555556 The v term is 2.111111111v. Take half its coefficient (1.055555556). Square it (1.114197532) and add it to both sides. Add '1.114197532' to each side of the equation. 2.111111111v + 1.114197532 + v2 = -0.5555555556 + 1.114197532 Reorder the terms: 1.114197532 + 2.111111111v + v2 = -0.5555555556 + 1.114197532 Combine like terms: -0.5555555556 + 1.114197532 = 0.5586419764 1.114197532 + 2.111111111v + v2 = 0.5586419764 Factor a perfect square on the left side: (v + 1.055555556)(v + 1.055555556) = 0.5586419764 Calculate the square root of the right side: 0.747423559 Break this problem into two subproblems by setting (v + 1.055555556) equal to 0.747423559 and -0.747423559.

Subproblem 1

v + 1.055555556 = 0.747423559 Simplifying v + 1.055555556 = 0.747423559 Reorder the terms: 1.055555556 + v = 0.747423559 Solving 1.055555556 + v = 0.747423559 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.055555556' to each side of the equation. 1.055555556 + -1.055555556 + v = 0.747423559 + -1.055555556 Combine like terms: 1.055555556 + -1.055555556 = 0.000000000 0.000000000 + v = 0.747423559 + -1.055555556 v = 0.747423559 + -1.055555556 Combine like terms: 0.747423559 + -1.055555556 = -0.308131997 v = -0.308131997 Simplifying v = -0.308131997

Subproblem 2

v + 1.055555556 = -0.747423559 Simplifying v + 1.055555556 = -0.747423559 Reorder the terms: 1.055555556 + v = -0.747423559 Solving 1.055555556 + v = -0.747423559 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.055555556' to each side of the equation. 1.055555556 + -1.055555556 + v = -0.747423559 + -1.055555556 Combine like terms: 1.055555556 + -1.055555556 = 0.000000000 0.000000000 + v = -0.747423559 + -1.055555556 v = -0.747423559 + -1.055555556 Combine like terms: -0.747423559 + -1.055555556 = -1.802979115 v = -1.802979115 Simplifying v = -1.802979115

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-0.308131997, -1.802979115}

Solution

v = {-0.308131997, -1.802979115}

See similar equations:

| 16x^2+x^6-64x=0 | | 7v^2+55v+42=0 | | 2x+13=-45 | | -8.9x=-19.58 | | 12=4t+6 | | p+2q=25 | | Y=20000+6*4 | | 21+18=39 | | 8y^7-16y^5/4y^3 | | Y=18000+6*3 | | 2x+6x-5=9x+3 | | 34560+17x+.2y=135000 | | X+7z+15x=29x+18 | | y=18000+3*b | | 6x+18=6x+2+16 | | 4x+7+8x=43 | | 4x+15=141 | | 4x+7+8x=35 | | 3x/9xy | | 4(5x-7)=72 | | 4x+7+5x=35 | | y=(x-2)(x+8) | | 3z-7=13-3z | | 30-[9+4(8-5)]= | | 2=12(20+-0.5y)-y | | 4x^2+3x=56 | | y=2300+B | | 4(p-1)+3(p+1)=100 | | f(x)=8x^2-48x+80 | | 10y-2=8y+5 | | 3y-7z=21 | | 130=3y+4z |

Equations solver categories