If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2+15x-4=0
a = -9; b = 15; c = -4;
Δ = b2-4ac
Δ = 152-4·(-9)·(-4)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-9}{2*-9}=\frac{-24}{-18} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+9}{2*-9}=\frac{-6}{-18} =1/3 $
| 5p+2=-10p | | 5/7x+6=-2/7x+6 | | 8x^+6x=9 | | 11+x+3-13=180 | | -(x+4)=11 | | 23-15=2(x-6) | | 9a^2-27a+20=0 | | -9z-3z=7z-3-3z | | 4(z-3)-(8z-9)=-5z | | (x+3)+(3x+4)=x | | -4(n-9)=-3n-2 | | y4-14y2+45=0 | | 9-33/8=a | | (3x-4)/9+x=(3x+4)/3+1 | | 7(c-94)=35 | | 30000=2y-3 | | -2(2+11)=b | | 4q+2=34 | | n-53/9=4 | | 9(k-96)=18 | | 7(b-90)=56 | | u/9+79=88 | | z/4+4=8 | | 6x-35+3x+54=180 | | 2=n/4-1 | | 9x-6x+4=x-6+10 | | -3/8y=48 | | 4(x+5)-9=2x+2(4+x) | | (x+7)÷5=13 | | 9y+5y=15 | | x-1,2=3,5 | | (X+3)+(8x+3)=x |