-b(13+4b)=-3(5-9b)+2

Simple and best practice solution for -b(13+4b)=-3(5-9b)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -b(13+4b)=-3(5-9b)+2 equation:



-b(13+4b)=-3(5-9b)+2
We move all terms to the left:
-b(13+4b)-(-3(5-9b)+2)=0
We add all the numbers together, and all the variables
-b(4b+13)-(-3(-9b+5)+2)=0
We multiply parentheses
-4b^2-13b-(-3(-9b+5)+2)=0
We calculate terms in parentheses: -(-3(-9b+5)+2), so:
-3(-9b+5)+2
We multiply parentheses
27b-15+2
We add all the numbers together, and all the variables
27b-13
Back to the equation:
-(27b-13)
We get rid of parentheses
-4b^2-13b-27b+13=0
We add all the numbers together, and all the variables
-4b^2-40b+13=0
a = -4; b = -40; c = +13;
Δ = b2-4ac
Δ = -402-4·(-4)·13
Δ = 1808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1808}=\sqrt{16*113}=\sqrt{16}*\sqrt{113}=4\sqrt{113}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{113}}{2*-4}=\frac{40-4\sqrt{113}}{-8} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{113}}{2*-4}=\frac{40+4\sqrt{113}}{-8} $

See similar equations:

| 8x+24=224 | | 15-2p=p+6 | | 2x+(4x–6)=180 | | 6a+12=4 | | S−1.4x=5.6 | | 2n+2=3n-12 | | 2x°+(4x–6)°=180° | | 3-32y-4=0 | | 37-x+6x-4=9 | | 16=5(u+5)+4u | | 4+y=-12 | | -30=-6w+3(w-5) | | 5x+7=(×-2)-4(2x-3) | | 2y×2=4 | | 3c​+7=10 | | 2y×2=4y-y=5y×=2 | | 50°+90°+x=180° | | 2x-4=-4(x-5 | | 2(2x-16)=36 | | 2(2x+16)=36 | | -5.98+5x=-1.8(-3.2x) | | 40=y+105 | | 2x+8=20x-2 | | c=6(14)+4 | | 15+-5n=10n | | x+22=57x=35 | | 2x–1.75=3.25 | | 7(a=1)-3a=5+4(2a-1) | | -3n-n=2n | | 5-6x/12-5-5x/7=x/3 | | 3x+3=|4x-1| | | E(h)=25 |

Equations solver categories