-k-4-4k-3=-1-3k(k)

Simple and best practice solution for -k-4-4k-3=-1-3k(k) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -k-4-4k-3=-1-3k(k) equation:


Simplifying
-1k + -4 + -4k + -3 = -1 + -3k(k)

Reorder the terms:
-4 + -3 + -1k + -4k = -1 + -3k(k)

Combine like terms: -4 + -3 = -7
-7 + -1k + -4k = -1 + -3k(k)

Combine like terms: -1k + -4k = -5k
-7 + -5k = -1 + -3k(k)

Multiply k * k
-7 + -5k = -1 + -3k2

Solving
-7 + -5k = -1 + -3k2

Solving for variable 'k'.

Reorder the terms:
-7 + 1 + -5k + 3k2 = -1 + -3k2 + 1 + 3k2

Combine like terms: -7 + 1 = -6
-6 + -5k + 3k2 = -1 + -3k2 + 1 + 3k2

Reorder the terms:
-6 + -5k + 3k2 = -1 + 1 + -3k2 + 3k2

Combine like terms: -1 + 1 = 0
-6 + -5k + 3k2 = 0 + -3k2 + 3k2
-6 + -5k + 3k2 = -3k2 + 3k2

Combine like terms: -3k2 + 3k2 = 0
-6 + -5k + 3k2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-2 + -1.666666667k + k2 = 0

Move the constant term to the right:

Add '2' to each side of the equation.
-2 + -1.666666667k + 2 + k2 = 0 + 2

Reorder the terms:
-2 + 2 + -1.666666667k + k2 = 0 + 2

Combine like terms: -2 + 2 = 0
0 + -1.666666667k + k2 = 0 + 2
-1.666666667k + k2 = 0 + 2

Combine like terms: 0 + 2 = 2
-1.666666667k + k2 = 2

The k term is -1.666666667k.  Take half its coefficient (-0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
-1.666666667k + 0.6944444447 + k2 = 2 + 0.6944444447

Reorder the terms:
0.6944444447 + -1.666666667k + k2 = 2 + 0.6944444447

Combine like terms: 2 + 0.6944444447 = 2.6944444447
0.6944444447 + -1.666666667k + k2 = 2.6944444447

Factor a perfect square on the left side:
(k + -0.8333333335)(k + -0.8333333335) = 2.6944444447

Calculate the square root of the right side: 1.6414763

Break this problem into two subproblems by setting 
(k + -0.8333333335) equal to 1.6414763 and -1.6414763.

Subproblem 1

k + -0.8333333335 = 1.6414763 Simplifying k + -0.8333333335 = 1.6414763 Reorder the terms: -0.8333333335 + k = 1.6414763 Solving -0.8333333335 + k = 1.6414763 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + k = 1.6414763 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + k = 1.6414763 + 0.8333333335 k = 1.6414763 + 0.8333333335 Combine like terms: 1.6414763 + 0.8333333335 = 2.4748096335 k = 2.4748096335 Simplifying k = 2.4748096335

Subproblem 2

k + -0.8333333335 = -1.6414763 Simplifying k + -0.8333333335 = -1.6414763 Reorder the terms: -0.8333333335 + k = -1.6414763 Solving -0.8333333335 + k = -1.6414763 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + k = -1.6414763 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + k = -1.6414763 + 0.8333333335 k = -1.6414763 + 0.8333333335 Combine like terms: -1.6414763 + 0.8333333335 = -0.8081429665 k = -0.8081429665 Simplifying k = -0.8081429665

Solution

The solution to the problem is based on the solutions from the subproblems. k = {2.4748096335, -0.8081429665}

See similar equations:

| 22y+4y^2+10=0 | | 4(x+1)=-2(4-x) | | -8=8(5+m) | | .0625y=40 | | 12+5x=7x+5 | | 6+10m=8+12m | | 7n-2=4n+1 | | -x^2+2x+35=0 | | 7(x-3)=42 | | 5x-2=3+5(x-1) | | t-9=-8 | | 65(Y-50)=Y+(-95) | | 180-8t=90+2t | | -13-19=-6 | | -x^2+2x+24=0 | | x^2+20x=125 | | 65(X-50)=Y+(-95) | | -2x+2=-6 | | 2x^2+4x=9x+18 | | 4a^2-21a+5=0 | | 8x+2x=100 | | 3(-1)-5y=9y | | 12+7x=75 | | .05x+.03(1200-1x)=42 | | 2.3y=41.4 | | 3(x+2)=26 | | 2c^2+15c+27=0 | | 8f+11=-7f-19 | | 5n+2=2n-7 | | x^2-13x=48 | | 3m+6=10-12m | | x^2-6x-40=0 |

Equations solver categories