If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x(x+2)+5=-x(-x-2)-3
We move all terms to the left:
-x(x+2)+5-(-x(-x-2)-3)=0
We add all the numbers together, and all the variables
-x(x+2)-(-x(-1x-2)-3)+5=0
We multiply parentheses
-x^2-2x-(-x(-1x-2)-3)+5=0
We calculate terms in parentheses: -(-x(-1x-2)-3), so:We add all the numbers together, and all the variables
-x(-1x-2)-3
We multiply parentheses
1x^2+2x-3
We add all the numbers together, and all the variables
x^2+2x-3
Back to the equation:
-(x^2+2x-3)
-1x^2-2x-(x^2+2x-3)+5=0
We get rid of parentheses
-1x^2-x^2-2x-2x+3+5=0
We add all the numbers together, and all the variables
-2x^2-4x+8=0
a = -2; b = -4; c = +8;
Δ = b2-4ac
Δ = -42-4·(-2)·8
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{5}}{2*-2}=\frac{4-4\sqrt{5}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{5}}{2*-2}=\frac{4+4\sqrt{5}}{-4} $
| X^+10x=0 | | -x(x+2)+5=(-x)(-x-2)-3 | | 127-300/z= | | (x+2)(x+2)+2=x(x)-x-4 | | 3y-5+40=180 | | (x+2((x+2)+2=x(x)-x-4 | | 160=-8(1-3x) | | x+(2x+2)+(2x-7)=180° | | 6-(x+3)-4x=-2 | | 100=500x | | 8+3x+x=-2(6+2x) | | 10,000r=483.08 | | 3n+12=36 | | 5x2-5x+-30=0 | | x/8x–5=3(x+1)+7 | | 2a=36+6a | | 3x²-25=43 | | 0.75/2.25=x/6.75 | | 0.5x4=6.5 | | 4.5/x=9/3 | | Y=5.25x+35 | | 10y/3-2/3+3=10y/9+1/9 | | 3.5/x=7/9 | | X/26=2.5/x | | .(–2)2=m16 | | -3x+2=2x+36 | | 3a-15/24= | | -9=-2n+5-8 | | 0.06(y−2)+0.16y=0.02y−1.2 | | 7y+19/×=13 | | 63=38+x-1 | | -9=2n+5-8 |