-x+9=4/3x-5

Simple and best practice solution for -x+9=4/3x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x+9=4/3x-5 equation:



-x+9=4/3x-5
We move all terms to the left:
-x+9-(4/3x-5)=0
Domain of the equation: 3x-5)!=0
x∈R
We add all the numbers together, and all the variables
-1x-(4/3x-5)+9=0
We get rid of parentheses
-1x-4/3x+5+9=0
We multiply all the terms by the denominator
-1x*3x+5*3x+9*3x-4=0
Wy multiply elements
-3x^2+15x+27x-4=0
We add all the numbers together, and all the variables
-3x^2+42x-4=0
a = -3; b = 42; c = -4;
Δ = b2-4ac
Δ = 422-4·(-3)·(-4)
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{429}}{2*-3}=\frac{-42-2\sqrt{429}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{429}}{2*-3}=\frac{-42+2\sqrt{429}}{-6} $

See similar equations:

| -5+9x=121 | | 31​ x−32​ =8 | | 60x+70=180 | | 11/5+q=1 | | w-10=0,5w-7 | | 5x²-1=79 | | 5(2x+)=9x+15+1x | | 3x=2x+84 | | -8n-5=11 | | 35=8(x+1)-5 | | 10.5+3.5x=5.5x+15 | | 13z+8.08=12.2z | | -3x-4+7x=16 | | −n5−2=−12 | | 9x-47=97 | | 2(x+1)–6=x+4 | | 1=2+6b+2b | | Y=24+9x | | 27x+39=120 | | 24x-42=102 | | -17f+5=-19f-15 | | 2+4j-26=10j | | 2x=x+84=3x | | 2.5x−10=25 | | 0.5(10x+17)=3.2(0.2x+5) | | 2=-2(6-x) | | 0.3x+3=0.25x+1 | | 3,936=(p+32) | | y+21=5y-7 | | 1/2b+9/4=7/4= | | F(x)=(x+1)-5 | | 21x-14=49 |

Equations solver categories