If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x2+40x+500=0
We add all the numbers together, and all the variables
-1x^2+40x+500=0
a = -1; b = 40; c = +500;
Δ = b2-4ac
Δ = 402-4·(-1)·500
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-60}{2*-1}=\frac{-100}{-2} =+50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+60}{2*-1}=\frac{20}{-2} =-10 $
| 9x-1=82 | | 6x+38/7=8 | | 12.4=3w+8−0.5w | | 27x7=9 | | 5n-6/6=14-6n | | 13-4x=x+9 | | x^2+2x-+2=0 | | -165=15x+5x | | 3n+7=n | | 4x+32-2x=3x-34 | | 5n+4=2n | | 6x-17=2x-5 | | 3n-2=16-2n | | 8^m=2^m^2 | | x−610=5 | | x+2=3x+8 | | 5x=16+4 | | 2n+6=18-n | | 6x-1=37 | | (2x-1)÷(3x+1)=0 | | x/6/10=5 | | 2(4x-1)2=4 | | 1/2t+7=3 | | 4n-3=2n-25 | | (-4-4e)^3=0 | | 4n+5=3n-6 | | 1/3x+x=32 | | x5=7 | | 2(3x+1)-4x=17 | | 60x*20(1-x)=80x*0(1-x) | | -2x+20=2 | | 3x+4/9=3 |