-x2+4=(3x-1)2

Simple and best practice solution for -x2+4=(3x-1)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x2+4=(3x-1)2 equation:



-x2+4=(3x-1)2
We move all terms to the left:
-x2+4-((3x-1)2)=0
We add all the numbers together, and all the variables
-1x^2-((3x-1)2)+4=0
We calculate terms in parentheses: -((3x-1)2), so:
(3x-1)2
We multiply parentheses
6x-2
Back to the equation:
-(6x-2)
We get rid of parentheses
-1x^2-6x+2+4=0
We add all the numbers together, and all the variables
-1x^2-6x+6=0
a = -1; b = -6; c = +6;
Δ = b2-4ac
Δ = -62-4·(-1)·6
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{15}}{2*-1}=\frac{6-2\sqrt{15}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{15}}{2*-1}=\frac{6+2\sqrt{15}}{-2} $

See similar equations:

| 3x2+27x+54=0 | | x2-3=-3x2+8x | | x2+4x+10=3 | | 12x-2(x-6)+10=102 | | 5x-3=|x+9| | | 5n-3=|n+9| | | 2/3=5+6d | | 7n+69(2n-2)=59(3n-2)+4n-2 | | 14-2(x+5)=28 | | -6(-8b+3)-3(-4b-6)=-b-8b | | 8(1+6v)+3=-277 | | 6n+5-6n=5 | | -5(4p-4)=-100 | | 26=3w+12 | | 5m-5m=8 | | g) 5(X+4)=50 | | -6q=-18 | | 100+0.15x=x | | 2x+x+x+x=90000 | | 4(w-3)-6=32 | | 10=2x=6 | | 4=2/y | | 860-0,0153x=95+0,0143x | | 3(2x+-1)+2(1+-5x)=9+x | | 19=1+4a-a | | x+1÷4=5 | | 20(2)+u(6)=u(4)+20(10) | | 4(x-1)-2(x+3)=-5 | | 10x+30=10x-30 | | 3m-14=6 | | 2x+5+3=-4 | | 2x+5+3=4- |

Equations solver categories