If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x2=-10
We move all terms to the left:
-x2-(-10)=0
We add all the numbers together, and all the variables
-1x^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $
| 6x^2−18x−60=0 | | 6x2−18x−60=0 | | 17-x^2=-3-x | | ((x+3)/(2x-3))=2 | | 3x+6=10x-81 | | 3s-10=-8+s | | X=60-5x | | 3x+1=x^2 | | (n-8)(n+4)=0 | | 3u2+u=4 | | 3.8-(-1-9.27)=2.6+13.3x | | y-3+45678/2345677774532-2345675345=1234567890 | | -5(y-3)=-4y-4 | | x+32/x^2=0 | | 9y3=5y+2 | | X(t)=15-2t | | 19-5/17x=17 | | 9y–3=5y+2 | | (k-7)(k-4)-6=(k+2)(k-8) | | 14b^2+116b-90=0 | | 2m-(3)=7 | | 0=-2t^2+7t+4 | | 0=-2t^2+7t-4 | | (x/4)=x | | -6x-6(-5x+9)=186 | | n-1/2=43/17 | | 0.7+x=1 | | -6-6(-5x+9)=186 | | m+1-3(2m^2-2m)=1 | | x+1=10x-5 | | C(x)=0.25x+5 | | w+35=42 |