.07x+.09x(2x)+.11(3x)=232

Simple and best practice solution for .07x+.09x(2x)+.11(3x)=232 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .07x+.09x(2x)+.11(3x)=232 equation:


Simplifying
0.07x + 0.09x(2x) + 0.11(3x) = 232

Remove parenthesis around (2x)
0.07x + 0.09x * 2x + 0.11(3x) = 232

Reorder the terms for easier multiplication:
0.07x + 0.09 * 2x * x + 0.11(3x) = 232

Multiply 0.09 * 2
0.07x + 0.18x * x + 0.11(3x) = 232

Multiply x * x
0.07x + 0.18x2 + 0.11(3x) = 232

Remove parenthesis around (3x)
0.07x + 0.18x2 + 0.11 * 3x = 232

Multiply 0.11 * 3
0.07x + 0.18x2 + 0.33x = 232

Reorder the terms:
0.07x + 0.33x + 0.18x2 = 232

Combine like terms: 0.07x + 0.33x = 0.4x
0.4x + 0.18x2 = 232

Solving
0.4x + 0.18x2 = 232

Solving for variable 'x'.

Reorder the terms:
-232 + 0.4x + 0.18x2 = 232 + -232

Combine like terms: 232 + -232 = 0
-232 + 0.4x + 0.18x2 = 0

Begin completing the square.  Divide all terms by
0.18 the coefficient of the squared term: 

Divide each side by '0.18'.
-1288.888889 + 2.222222222x + x2 = 0

Move the constant term to the right:

Add '1288.888889' to each side of the equation.
-1288.888889 + 2.222222222x + 1288.888889 + x2 = 0 + 1288.888889

Reorder the terms:
-1288.888889 + 1288.888889 + 2.222222222x + x2 = 0 + 1288.888889

Combine like terms: -1288.888889 + 1288.888889 = 0.000000
0.000000 + 2.222222222x + x2 = 0 + 1288.888889
2.222222222x + x2 = 0 + 1288.888889

Combine like terms: 0 + 1288.888889 = 1288.888889
2.222222222x + x2 = 1288.888889

The x term is 2.222222222x.  Take half its coefficient (1.111111111).
Square it (1.234567901) and add it to both sides.

Add '1.234567901' to each side of the equation.
2.222222222x + 1.234567901 + x2 = 1288.888889 + 1.234567901

Reorder the terms:
1.234567901 + 2.222222222x + x2 = 1288.888889 + 1.234567901

Combine like terms: 1288.888889 + 1.234567901 = 1290.123456901
1.234567901 + 2.222222222x + x2 = 1290.123456901

Factor a perfect square on the left side:
(x + 1.111111111)(x + 1.111111111) = 1290.123456901

Calculate the square root of the right side: 35.918288613

Break this problem into two subproblems by setting 
(x + 1.111111111) equal to 35.918288613 and -35.918288613.

Subproblem 1

x + 1.111111111 = 35.918288613 Simplifying x + 1.111111111 = 35.918288613 Reorder the terms: 1.111111111 + x = 35.918288613 Solving 1.111111111 + x = 35.918288613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.111111111' to each side of the equation. 1.111111111 + -1.111111111 + x = 35.918288613 + -1.111111111 Combine like terms: 1.111111111 + -1.111111111 = 0.000000000 0.000000000 + x = 35.918288613 + -1.111111111 x = 35.918288613 + -1.111111111 Combine like terms: 35.918288613 + -1.111111111 = 34.807177502 x = 34.807177502 Simplifying x = 34.807177502

Subproblem 2

x + 1.111111111 = -35.918288613 Simplifying x + 1.111111111 = -35.918288613 Reorder the terms: 1.111111111 + x = -35.918288613 Solving 1.111111111 + x = -35.918288613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.111111111' to each side of the equation. 1.111111111 + -1.111111111 + x = -35.918288613 + -1.111111111 Combine like terms: 1.111111111 + -1.111111111 = 0.000000000 0.000000000 + x = -35.918288613 + -1.111111111 x = -35.918288613 + -1.111111111 Combine like terms: -35.918288613 + -1.111111111 = -37.029399724 x = -37.029399724 Simplifying x = -37.029399724

Solution

The solution to the problem is based on the solutions from the subproblems. x = {34.807177502, -37.029399724}

See similar equations:

| 2z+31=-9z+24 | | f(x)=11x^2(x-4) | | 19x+10=33-12x | | 16-(-13)-3-(-5)+4= | | 7x+6(6)=8 | | 7c(3-6c)=12-(c+6)17c | | 2x+16+22y= | | 258.457=0.157x+255.34 | | 13x+14=23 | | 2x-4=-4(5x-1/2) | | -2+7x+100+10x-5+7x+3=360 | | 2(-5x-4)-2x=-20-6x | | 2100-2400= | | 2/3+1/5x-1/4=4/5x | | -55+(-38)= | | r=(r+B) | | 4x-1=-(1-4x) | | 4-8n=-4-(8n-8) | | 23(13)=x | | 0.45(70)+0.05y=0.10(70+y) | | 4t+7=13 | | y=100+30 | | 6(5r+6)=30(r+2)-5 | | 128=-2(7x-8) | | 2p-0.7=0.7+2p | | 6k+21=3(2k+9)-6 | | 3*(-3)+4*(-1)= | | -5(3-6m)=135 | | (3+4)-(x+2)= | | -5b+5-b+3=2(b+7)-2(3b+2) | | -14=(2/3)t | | -1+6(3x-3)=7(8+x)+2 |

Equations solver categories