.4x+10=1/5x+12

Simple and best practice solution for .4x+10=1/5x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .4x+10=1/5x+12 equation:



.4x+10=1/5x+12
We move all terms to the left:
.4x+10-(1/5x+12)=0
Domain of the equation: 5x+12)!=0
x∈R
We get rid of parentheses
.4x-1/5x-12+10=0
We multiply all the terms by the denominator
(.4x)*5x-12*5x+10*5x-1=0
We add all the numbers together, and all the variables
(+.4x)*5x-12*5x+10*5x-1=0
We multiply parentheses
5x^2-12*5x+10*5x-1=0
Wy multiply elements
5x^2-60x+50x-1=0
We add all the numbers together, and all the variables
5x^2-10x-1=0
a = 5; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·5·(-1)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{30}}{2*5}=\frac{10-2\sqrt{30}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{30}}{2*5}=\frac{10+2\sqrt{30}}{10} $

See similar equations:

| Y=6x²-30x+36 | | c/15=90 | | v-17=-29 | | 13a+8=31+16 | | 18-5q=2q+4 | | 4(x-7)=x-5 | | 59049-3^(x-1)=0 | | .4(3x–5)–7(4x+9)=13 | | 59049-3^x-1=0 | | 0.5x+12=16 | | +5q-4=2q8+ | | T=5x+11 | | H(t)=-2t²+24t+40 | | H(t)=-2t²+24+ | | 3^x/5=25 | | 126=1.04t | | 3(2x-5)=9-x÷2 | | x+8=10+20 | | 3x-30+4=180 | | 5x-12°=6x-48° | | 2-x/4+1/2x=3/4x | | -2=12x=2(7x-11) | | 3x-8=2-2x | | 6x+33/5=4x+1 | | (6x+33)/5=4x+1 | | (4x-14)=(6x+4) | | 110x=360 | | 15x+8=7x-16 | | 2,5x=16+x | | 4m-4=42 | | (6x+4)^=(4x-14)^ | | 5x-9=-77 |

Equations solver categories