.4x-8=1/10x+13

Simple and best practice solution for .4x-8=1/10x+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .4x-8=1/10x+13 equation:



.4x-8=1/10x+13
We move all terms to the left:
.4x-8-(1/10x+13)=0
Domain of the equation: 10x+13)!=0
x∈R
We get rid of parentheses
.4x-1/10x-13-8=0
We multiply all the terms by the denominator
(.4x)*10x-13*10x-8*10x-1=0
We add all the numbers together, and all the variables
(+.4x)*10x-13*10x-8*10x-1=0
We multiply parentheses
10x^2-13*10x-8*10x-1=0
Wy multiply elements
10x^2-130x-80x-1=0
We add all the numbers together, and all the variables
10x^2-210x-1=0
a = 10; b = -210; c = -1;
Δ = b2-4ac
Δ = -2102-4·10·(-1)
Δ = 44140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44140}=\sqrt{4*11035}=\sqrt{4}*\sqrt{11035}=2\sqrt{11035}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-2\sqrt{11035}}{2*10}=\frac{210-2\sqrt{11035}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+2\sqrt{11035}}{2*10}=\frac{210+2\sqrt{11035}}{20} $

See similar equations:

| x²+3x-70=0 | | 2x+3+70=0 | | X²+3x+70=0 | | W^2=(3t+7)/2t | | 2x+3-70=0 | | x/2x+80=180 | | x+2x-3=12 | | 50=x+.3x | | –21=–7(s+38) | | 5/3(x-2)=5 | | 8*x-5/2=3x | | 75=x+.3x | | X4(2x)=6240 | | 4(6x+6)=9(4x) | | 18b-20=214 | | 2a/9=-17 | | 2/5x-8=1/10+13 | | x-2/3=3x= | | 4a(a+7)=120 | | 7x5=105 | | (x-6)-x=78 | | 14=24(34xx23) | | 3a+12=7a-17 | | 2x-12=15-x | | 5c=+5c6c | | -8+5x=0 | | 4a+8=6 | | 17d−14d=15 | | 12a+2=5 | | x2+9x=3 | | 17.5-b=12.4 | | w^2+w-306=0 |

Equations solver categories