.5x+2=3/8x-1

Simple and best practice solution for .5x+2=3/8x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5x+2=3/8x-1 equation:



.5x+2=3/8x-1
We move all terms to the left:
.5x+2-(3/8x-1)=0
Domain of the equation: 8x-1)!=0
x∈R
We get rid of parentheses
.5x-3/8x+1+2=0
We multiply all the terms by the denominator
(.5x)*8x+1*8x+2*8x-3=0
We add all the numbers together, and all the variables
(+.5x)*8x+1*8x+2*8x-3=0
We multiply parentheses
8x^2+1*8x+2*8x-3=0
Wy multiply elements
8x^2+8x+16x-3=0
We add all the numbers together, and all the variables
8x^2+24x-3=0
a = 8; b = 24; c = -3;
Δ = b2-4ac
Δ = 242-4·8·(-3)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{42}}{2*8}=\frac{-24-4\sqrt{42}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{42}}{2*8}=\frac{-24+4\sqrt{42}}{16} $

See similar equations:

| -8.5x+0.44=-2.96 | | -4(x+5)^2=64 | | 3/5=x+4/2x-3 | | 3m/5-1/2=7/10 | | 74=175-w | | (15)^2+(x)^2=18^2 | | (n/3)+(3/4)=(5/6)n-1 | | 5x+(1.04-5x)=1.04 | | -2(5t-2)+8t=5t-2 | | -v+29=174 | | 12+(t-5)=0 | | 115/30=x/6 | | 50-y=269 | | -x/5-46=-39 | | -5(y+3)+3(3y-7)=3(y-4)+10 | | x^2/3-4=5 | | -4w+5=w+2-6w-4⁢w+5=w+2-6⁢w | | 15-(6-7r)=2+6r | | X+0.09x=140 | | 8/11n=564/11 | | 8y+7=3y-4 | | 4x+3(2x-5=45 | | -2.4y+5=29 | | 2/3-(n*5/8)=7/12 | | 2t+5=35 | | 7x+149=180 | | 9x+4x=63 | | 9g+11=-13 | | 12p-8=6p+5 | | 1/3(y-3)=1/4(y+4) | | 11x=100*12 | | 0.02(y-4)+0.12y=0.04y-0.01(20) |

Equations solver categories