.5x+3=1/8x-12

Simple and best practice solution for .5x+3=1/8x-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5x+3=1/8x-12 equation:



.5x+3=1/8x-12
We move all terms to the left:
.5x+3-(1/8x-12)=0
Domain of the equation: 8x-12)!=0
x∈R
We get rid of parentheses
.5x-1/8x+12+3=0
We multiply all the terms by the denominator
(.5x)*8x+12*8x+3*8x-1=0
We add all the numbers together, and all the variables
(+.5x)*8x+12*8x+3*8x-1=0
We multiply parentheses
8x^2+12*8x+3*8x-1=0
Wy multiply elements
8x^2+96x+24x-1=0
We add all the numbers together, and all the variables
8x^2+120x-1=0
a = 8; b = 120; c = -1;
Δ = b2-4ac
Δ = 1202-4·8·(-1)
Δ = 14432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14432}=\sqrt{16*902}=\sqrt{16}*\sqrt{902}=4\sqrt{902}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-4\sqrt{902}}{2*8}=\frac{-120-4\sqrt{902}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+4\sqrt{902}}{2*8}=\frac{-120+4\sqrt{902}}{16} $

See similar equations:

| 8x=189 | | 14-3x=–10 | | −6k+7.3=8.5 | | 2((12+2x)+(15+2-))=74 | | 2/5h-4.8=-4.5 | | 12x+19x-6+2=-2x+2-6 | | -52=-3u=8 | | 4(w+1)=(-6) | | -18+4a=28-5a | | 36x=270 | | 2-2z=6 | | 2/5(j+40)=(-4) | | 5(n-4)=(-60) | | 3=(-5k)/2 | | 24x=270 | | 2x-40+1/2x+20+2x-115=180 | | 4t−3=−15 | | -2(4+x)=-4(x-2) | | 7(3n+8)=7(2n+6) | | 3(2k+3)=-(-7k+1) | | -8=5m-(-12) | | -(1-3a)-5=8a+9 | | -5+7x=-11x+49 | | -3x+10=5x+-7 | | w(w+2.2)-4w=9.3 | | 4x+2+5(x-8)=43 | | -5p=5(6+p)+3p | | 4(5x+1)=(1/2)(20x+16)+16 | | 39-3b=-7(8b+2) | | 4n-2=-2+8n | | 3/4x+9=24 | | 700-20w=450 |

Equations solver categories