.5x+84=x2/3

Simple and best practice solution for .5x+84=x2/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5x+84=x2/3 equation:



.5x+84=x2/3
We move all terms to the left:
.5x+84-(x2/3)=0
We add all the numbers together, and all the variables
.5x-(+x2/3)+84=0
We get rid of parentheses
.5x-x2/3+84=0
We multiply all the terms by the denominator
(.5x)*3-x2+84*3=0
We add all the numbers together, and all the variables
(+.5x)*3-x2+84*3=0
We add all the numbers together, and all the variables
-1x^2+(+.5x)*3+252=0
We multiply parentheses
-1x^2+3x+252=0
a = -1; b = 3; c = +252;
Δ = b2-4ac
Δ = 32-4·(-1)·252
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{113}}{2*-1}=\frac{-3-3\sqrt{113}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{113}}{2*-1}=\frac{-3+3\sqrt{113}}{-2} $

See similar equations:

| 6+n/7=2 | | 9x+4=4x+13 | | .7(x+3)=2.1 | | 7x=48+90=180 | | 18x-4x+x-2x+2=11 | | -8n(7+6n)=-3n+34 | | 1/2x+9/10=-7x+4 | | 12x+4=12x+6 | | 2/5x+16=14-3/10x | | u-6u=28 | | -3x-4=5x+12 | | -1.2t^2+3.5t+7=0 | | 3(m-7)=2 | | 18g+g-13g-4g-1=9 | | -100x+11=99 | | 3n+6+3n=0 | | 2w-9=6w+31 | | 3s-s-s+2=19 | | 7(m+5)=35 | | 5(35m+.10m)=5(25m+.25m) | | 18y+41=49 | | 6m-2m-4=16 | | 12(0.5x-5)=-6(-x+10 | | x3+2x2−16x−32=0 | | X+9=40x+18 | | 7=0.02x^2 | | x-1/16=7/17 | | 13z=6z-10z=18 | | B-1÷2=b | | 3b-3b+3b+3b-4=20 | | 15=2x=3x | | (12x+12)=180 |

Equations solver categories