If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.5x^2+4x-2=0
a = .5; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·.5·(-2)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{5}}{2*.5}=\frac{-4-2\sqrt{5}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{5}}{2*.5}=\frac{-4+2\sqrt{5}}{1} $
| (2x-5)=(5x+146) | | (3x+12)+(8x-33)+x=180 | | 14-x=15-0,5x | | 103=(2y+26) | | x/7=5/49 | | -1-4x=x+7 | | X=75+0,5x | | 2(p-(4p+18)+16)=2(p+2) | | (x+7)^2=450 | | 60-5m=80-15m | | 4(1/2x-3x)=8 | | ((7t+1)/6)=((t+5)/12)+((t-3)/12) | | 8^2x+1=2408 | | 8^2x+1=3408 | | | | | | | | | | 2x=15/8 | | 20+5m=23+2m | | 6x-20+4x+50=180 | | 125+2m=100+3m | | 5x=210x/4 | | 4r^2+15+7=-1 | | 8+1p=6+2p | | a÷2÷4=9 | | 24^(3x+1)=290 | | 1)-4x=84 | | 25¶a=42 | | 41.95x=57.95 | | 1/2x+(-2)=x-4 | | 2x+4=3×+1/2 |