If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.70x + 0.25(100) = 0.60x(x + 100) Multiply 0.25 * 100 0.70x + 25 = 0.60x(x + 100) Reorder the terms: 25 + 0.70x = 0.60x(x + 100) Reorder the terms: 25 + 0.70x = 0.60x(100 + x) 25 + 0.70x = (100 * 0.60x + x * 0.60x) 25 + 0.70x = (60x + 0.60x2) Solving 25 + 0.70x = 60x + 0.60x2 Solving for variable 'x'. Combine like terms: 0.70x + -60x = -59.3x 25 + -59.3x + -0.60x2 = 60x + 0.60x2 + -60x + -0.60x2 Reorder the terms: 25 + -59.3x + -0.60x2 = 60x + -60x + 0.60x2 + -0.60x2 Combine like terms: 60x + -60x = 0 25 + -59.3x + -0.60x2 = 0 + 0.60x2 + -0.60x2 25 + -59.3x + -0.60x2 = 0.60x2 + -0.60x2 Combine like terms: 0.60x2 + -0.60x2 = 0.00 25 + -59.3x + -0.60x2 = 0.00 Begin completing the square. Divide all terms by -0.60 the coefficient of the squared term: Divide each side by '-0.60'. -41.66666667 + 98.83333333x + x2 = 0 Move the constant term to the right: Add '41.66666667' to each side of the equation. -41.66666667 + 98.83333333x + 41.66666667 + x2 = 0 + 41.66666667 Reorder the terms: -41.66666667 + 41.66666667 + 98.83333333x + x2 = 0 + 41.66666667 Combine like terms: -41.66666667 + 41.66666667 = 0.00000000 0.00000000 + 98.83333333x + x2 = 0 + 41.66666667 98.83333333x + x2 = 0 + 41.66666667 Combine like terms: 0 + 41.66666667 = 41.66666667 98.83333333x + x2 = 41.66666667 The x term is 98.83333333x. Take half its coefficient (49.41666667). Square it (2442.006945) and add it to both sides. Add '2442.006945' to each side of the equation. 98.83333333x + 2442.006945 + x2 = 41.66666667 + 2442.006945 Reorder the terms: 2442.006945 + 98.83333333x + x2 = 41.66666667 + 2442.006945 Combine like terms: 41.66666667 + 2442.006945 = 2483.67361167 2442.006945 + 98.83333333x + x2 = 2483.67361167 Factor a perfect square on the left side: (x + 49.41666667)(x + 49.41666667) = 2483.67361167 Calculate the square root of the right side: 49.836468692 Break this problem into two subproblems by setting (x + 49.41666667) equal to 49.836468692 and -49.836468692.Subproblem 1
x + 49.41666667 = 49.836468692 Simplifying x + 49.41666667 = 49.836468692 Reorder the terms: 49.41666667 + x = 49.836468692 Solving 49.41666667 + x = 49.836468692 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-49.41666667' to each side of the equation. 49.41666667 + -49.41666667 + x = 49.836468692 + -49.41666667 Combine like terms: 49.41666667 + -49.41666667 = 0.00000000 0.00000000 + x = 49.836468692 + -49.41666667 x = 49.836468692 + -49.41666667 Combine like terms: 49.836468692 + -49.41666667 = 0.419802022 x = 0.419802022 Simplifying x = 0.419802022Subproblem 2
x + 49.41666667 = -49.836468692 Simplifying x + 49.41666667 = -49.836468692 Reorder the terms: 49.41666667 + x = -49.836468692 Solving 49.41666667 + x = -49.836468692 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-49.41666667' to each side of the equation. 49.41666667 + -49.41666667 + x = -49.836468692 + -49.41666667 Combine like terms: 49.41666667 + -49.41666667 = 0.00000000 0.00000000 + x = -49.836468692 + -49.41666667 x = -49.836468692 + -49.41666667 Combine like terms: -49.836468692 + -49.41666667 = -99.253135362 x = -99.253135362 Simplifying x = -99.253135362Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.419802022, -99.253135362}
| 6(x-6)+8=8x-12 | | 3(3m+4)+7= | | 24y-(5y+6)=2y+3 | | 2/3(9x-3)=5(2x+7) | | -2(x-7)+10x=34 | | .70x+.25(100)=.60x+100+100 | | 125m-75m+42975=46125-175m | | 5x-5=22 | | 15n-20(1+30n)=-34-23(19n+38) | | 11p-4=6pA+1 | | x+7=113 | | 23x+13y=2 | | x^7+11=1 | | 34=v+42-5v | | 6(0)=7-4y | | 13x+23y=2 | | 2-f+5f=63 | | -3u=-8-5u | | 29(k+9)=4(5k-18)+9 | | 6(-1)=7-4y | | 9-8v=4-8v+5 | | 6f-1=5f-7 | | 5+5x=8+3x | | -39x-1176=-39(x+23) | | 7w+10=10+4w-7 | | 6y-3=3-6y | | 10q-55=7q-14 | | -8+r/5=-5 | | 22-(5)(6v-1)=(-63) | | -2(x-28)=6(x-19)+10 | | c=2.99(6)+15.11 | | 5xn=18 |