.75k+7=1/8k+27

Simple and best practice solution for .75k+7=1/8k+27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .75k+7=1/8k+27 equation:



.75k+7=1/8k+27
We move all terms to the left:
.75k+7-(1/8k+27)=0
Domain of the equation: 8k+27)!=0
k∈R
We get rid of parentheses
.75k-1/8k-27+7=0
We multiply all the terms by the denominator
(.75k)*8k-27*8k+7*8k-1=0
We add all the numbers together, and all the variables
(+.75k)*8k-27*8k+7*8k-1=0
We multiply parentheses
8k^2-27*8k+7*8k-1=0
Wy multiply elements
8k^2-216k+56k-1=0
We add all the numbers together, and all the variables
8k^2-160k-1=0
a = 8; b = -160; c = -1;
Δ = b2-4ac
Δ = -1602-4·8·(-1)
Δ = 25632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25632}=\sqrt{144*178}=\sqrt{144}*\sqrt{178}=12\sqrt{178}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-12\sqrt{178}}{2*8}=\frac{160-12\sqrt{178}}{16} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+12\sqrt{178}}{2*8}=\frac{160+12\sqrt{178}}{16} $

See similar equations:

| 7d=5d–10 | | x-8.5=-3.4 | | s*2.5=6.25 | | 10+3c=2c | | 2.4(x-4)=21.9 | | 7+5=4(x-7) | | n+35=32 | | 39x+3=60 | | h/2+1=7 | | 11/w=33/w+4 | | 2=20/(x^2+2) | | 25x+700=3700 | | 3x+17+x5=7x+10 | | 3/5+x=3 | | 10000(1+.05)*x=10000(1+.04/1)*x | | 148x=180 | | 2(2x)=16 | | y/3+78=81 | | y=11/3(4) | | y-23=-46 | | 7.8/13=x/2.6 | | 21-14=-5h | | 4z-6=6(z | | x/2-10=2 | | 2x+7=3×+4 | | -4=3/7x | | 55-35x=500 | | 5x+15=-30x-20 | | 9d^2+25d-6=0 | | .20x+13=3+62.2 | | 7y+5+3y+1=2y+2 | | 2/3+h=8 |

Equations solver categories