.75x+5=1/75x

Simple and best practice solution for .75x+5=1/75x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .75x+5=1/75x equation:



.75x+5=1/75x
We move all terms to the left:
.75x+5-(1/75x)=0
Domain of the equation: 75x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
.75x-(+1/75x)+5=0
We get rid of parentheses
.75x-1/75x+5=0
We multiply all the terms by the denominator
(.75x)*75x+5*75x-1=0
We add all the numbers together, and all the variables
(+.75x)*75x+5*75x-1=0
We multiply parentheses
75x^2+5*75x-1=0
Wy multiply elements
75x^2+375x-1=0
a = 75; b = 375; c = -1;
Δ = b2-4ac
Δ = 3752-4·75·(-1)
Δ = 140925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140925}=\sqrt{25*5637}=\sqrt{25}*\sqrt{5637}=5\sqrt{5637}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(375)-5\sqrt{5637}}{2*75}=\frac{-375-5\sqrt{5637}}{150} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(375)+5\sqrt{5637}}{2*75}=\frac{-375+5\sqrt{5637}}{150} $

See similar equations:

| 7x+3(x+1)=10x+3 | | 69=3x+2(2x+3) | | -2b-3(3+b)=-42 | | 10x-1/2x+5=3 | | 16=w/ | | 4=2(y+3) | | 2x+6(x-)=2(x-6) | | 3/4x+5=13/4x | | 12y+13=77-2y | | 6(3n+4)=-84 | | m/31=-8 | | -36+7x=76-× | | 9x+7=11x+1 | | 6(x-1)=3(2x-4)+6 | | m=511/1 | | 5r-7=3r+3r | | 10x+7x=18+5x | | -10y-3y+1=-38 | | -10=x-21-x | | 5+5(2+v)=-2(v+3) | | 6+2(3x+2)=5(2+x) | | -7(-4w+5)-8w=4(w-9)-3 | | C=40-2.5r/10 | | 3(x+10)=4(x-2 | | 9(x-1)/12=3(x+2)/7 | | 15-8x+6.73x=10 | | 9/7=z12 | | 8x-1+9x+11=180 | | –6+b=–18 | | 0=-2a+2a | | 11/2z-1=-25+3/2z | | 1/2x-7=-2 |

Equations solver categories