0.02(6t-1)=0.12(t-3)+0.34

Simple and best practice solution for 0.02(6t-1)=0.12(t-3)+0.34 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.02(6t-1)=0.12(t-3)+0.34 equation:


Simplifying
0.02(6t + -1) = 0.12(t + -3) + 0.34

Reorder the terms:
0.02(-1 + 6t) = 0.12(t + -3) + 0.34
(-1 * 0.02 + 6t * 0.02) = 0.12(t + -3) + 0.34
(-0.02 + 0.12t) = 0.12(t + -3) + 0.34

Reorder the terms:
-0.02 + 0.12t = 0.12(-3 + t) + 0.34
-0.02 + 0.12t = (-3 * 0.12 + t * 0.12) + 0.34
-0.02 + 0.12t = (-0.36 + 0.12t) + 0.34

Reorder the terms:
-0.02 + 0.12t = -0.36 + 0.34 + 0.12t

Combine like terms: -0.36 + 0.34 = -0.02
-0.02 + 0.12t = -0.02 + 0.12t

Add '0.02' to each side of the equation.
-0.02 + 0.02 + 0.12t = -0.02 + 0.02 + 0.12t

Combine like terms: -0.02 + 0.02 = 0.00
0.00 + 0.12t = -0.02 + 0.02 + 0.12t
0.12t = -0.02 + 0.02 + 0.12t

Combine like terms: -0.02 + 0.02 = 0.00
0.12t = 0.00 + 0.12t
0.12t = 0.12t

Add '-0.12t' to each side of the equation.
0.12t + -0.12t = 0.12t + -0.12t

Combine like terms: 0.12t + -0.12t = 0.00
0.00 = 0.12t + -0.12t

Combine like terms: 0.12t + -0.12t = 0.00
0.00 = 0.00

Solving
0.00 = 0.00

Couldn't find a variable to solve for.

This equation is an identity, all real numbers are solutions.

See similar equations:

| 3n-(2+4)= | | 15x+590=545+20x | | 3n-(2+5)= | | x+xy+y-30=0 | | 3n-(2+6)= | | .02(6t-1)=.12(t-3)+.34 | | 3a+2b=54 | | -22x+134=-14x+86 | | 3x+5+5x-25+4x+10=180 | | 1000/(3/5) | | 12+2x=36+1x | | 4x-2(x-1)=x-22 | | x^4=.17 | | 18=1-g | | 0=-3x^2+2x-2 | | 19+5r=4r+6(-1+r) | | p-3=4+x | | 2(-10+6x)=52 | | -2k-3(1+k)-4=0 | | -5+6=-12u+62 | | 5(7x+10)=470 | | 4x-2x-13=-4x-21 | | 6x+2=8+2x | | 2x=6+10y | | 7b+3=5(b-2)+1 | | 4(k-10)-7=13 | | 6(-9+7x)=450 | | 8=50-.5y | | 3(-1x-3)=-30 | | 7k+28=-2+5(6+6k) | | -5x-12=-8x+3 | | 4(-2x-9)=-4 |

Equations solver categories