0.12(24)+0.02x=0.4x(12+x)

Simple and best practice solution for 0.12(24)+0.02x=0.4x(12+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.12(24)+0.02x=0.4x(12+x) equation:



0.12(24)+0.02x=0.4x(12+x)
We move all terms to the left:
0.12(24)+0.02x-(0.4x(12+x))=0
We add all the numbers together, and all the variables
0.02x-(0.4x(x+12))+0.1224=0
We calculate terms in parentheses: -(0.4x(x+12)), so:
0.4x(x+12)
We multiply parentheses
0x^2+0x
We add all the numbers together, and all the variables
x^2+x
Back to the equation:
-(x^2+x)
We get rid of parentheses
-x^2+0.02x-x+0.1224=0
We add all the numbers together, and all the variables
-1x^2-0.98x+0.1224=0
a = -1; b = -0.98; c = +0.1224;
Δ = b2-4ac
Δ = -0.982-4·(-1)·0.1224
Δ = 1.45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.98)-\sqrt{1.45}}{2*-1}=\frac{0.98-\sqrt{1.45}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.98)+\sqrt{1.45}}{2*-1}=\frac{0.98+\sqrt{1.45}}{-2} $

See similar equations:

| Z+8x=77 | | A=9R/i | | 0.5(7d+4)=-1.5d | | 4-(x-3)=-10+5(x+1) | | -8=s+7 | | 3x+1+2=2x-4 | | 7(2–m)=3m | | 4(u+7)=6u+22 | | 0.25r-0.1255+0.5r=0.5+r | | 38/6=152/m | | 127=-(2x+3) | | 2/9x=19 | | 7x-43=4(x-4) | | 3n²-n=102 | | x9=45 | | 5x2-41x+8=0 | | y2+6y+8=0 | | 3x+2x+9x+x+4x+8x+21-43+24-34+14+48=180 | | 5(x-3)-2x=-6 | | 8=u-5 | | 4x-9/7x=95/42 | | 10=5+t | | 16/5=8w | | -6=-2+s | | x3+6=16x= | | 3x-2x+9x+21+43+24=180 | | r(2r+1)(2r^2+1)=0 | | 5x-22=24x-55 | | S+d=200 | | 5x=-2/3 | | -5(x+4)=-2x-5 | | -30=3(v-7) |

Equations solver categories