0.1360=w(1-0,59w)

Simple and best practice solution for 0.1360=w(1-0,59w) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.1360=w(1-0,59w) equation:



0.1360=w(1-0.59w)
We move all terms to the left:
0.1360-(w(1-0.59w))=0
We add all the numbers together, and all the variables
-(w(-0.59w+1))+0.1360=0
We add all the numbers together, and all the variables
-(w(-0.59w+1))+0.136=0
We calculate terms in parentheses: -(w(-0.59w+1)), so:
w(-0.59w+1)
We multiply parentheses
0w^2+w
We add all the numbers together, and all the variables
w^2+w
Back to the equation:
-(w^2+w)
We get rid of parentheses
-w^2-w+0.136=0
We add all the numbers together, and all the variables
-1w^2-1w+0.136=0
a = -1; b = -1; c = +0.136;
Δ = b2-4ac
Δ = -12-4·(-1)·0.136
Δ = 1.544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{1.544}}{2*-1}=\frac{1-\sqrt{1.544}}{-2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{1.544}}{2*-1}=\frac{1+\sqrt{1.544}}{-2} $

See similar equations:

| 0.55x=21500 | | 8x+24=8(+) | | 87=x-x(.85) | | X+0.05x=21,500 | | 0.3x+2.4x=16.6-1.8+2.3x | | 0.9x-0.7(x-2)=0.2(x-7) | | 12x-3(x+1)=2(x-2) | | w4-9=37 | | 8((x+1)=7(x-8)+x | | 0.04(2x-34)=-0.8(x-6) | | 3+1.5(x+4)=3.5x-1 | | 0.45x+0.5x=x-1.5 | | 7x+13=128 | | 5-2w/3w+4=9/8 | | X/4-2x/3=-15/2 | | 0.05x+0.05(x+340)=79 | | (x)+(45)=(2x-2) | | x4+x2+x=6 | | Q=-50+p | | (19x-1)+(13-5)=90 | | 5(x-3)+6=9x-(4x+5)-4 | | 1/4x+2/3x-4=-4+5/2× | | 3(x+9)=9+3x+20 | | (3k)/(2k-5)=7/3 | | 57.2y-71.5+14.3y+7=22 | | 11x-17x=0 | | 8x+9*(7-2+x)=46 | | 2y—8=28 | | 3=3,3/x | | 7w+10=38 | | 14.6x-41.4=10 | | 4(v-1)=3v+4-2(-5v-2) |

Equations solver categories