If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.1q=50/q
We move all terms to the left:
0.1q-(50/q)=0
Domain of the equation: q)!=0We add all the numbers together, and all the variables
q!=0/1
q!=0
q∈R
0.1q-(+50/q)=0
We get rid of parentheses
0.1q-50/q=0
We multiply all the terms by the denominator
(0.1q)*q-50=0
We add all the numbers together, and all the variables
(+0.1q)*q-50=0
We multiply parentheses
0q^2-50=0
We add all the numbers together, and all the variables
q^2-50=0
a = 1; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1·(-50)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*1}=\frac{0-10\sqrt{2}}{2} =-\frac{10\sqrt{2}}{2} =-5\sqrt{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*1}=\frac{0+10\sqrt{2}}{2} =\frac{10\sqrt{2}}{2} =5\sqrt{2} $
| 2.4w+23.6=43.5 | | 7(5+11b)=-33+9b | | 5) 2.4w+23.6=43.5 | | 7x+6+7x+1+x=180 | | -4=2w+-8 | | 4(y-30)=4y+2 | | 3=11-2u | | 31=4j-21 | | -2x+-16=-12 | | 7j+3=4j+24 | | 9-7q=86 | | 2+4(7-3r)=3(r+5) | | 10x-45x-13=11(5x+6) | | 12=3q-12 | | 8.3w=53.95 | | 10−2z=6 | | s/5-46=-40 | | 18/15=24/x | | -(x+7)=-2(x-4) | | -6(4x+8)=-24x-48 | | 15+-6d=51 | | c+234=8 | | 24/x=18/15 | | |b+5|=4 | | 5(v+3)=-3(7v-3)+8v | | -9=c/3-12 | | -6(4x+8)=24x-48 | | 8/15=24/x= | | -35+5x=5x-2x | | 1x(3+7)=(1x3)+(1x7) | | 4(3g+9)+30=150 | | -7/3y+3=-7/5y-2/5 |