If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.23t^2-2t-6.4=0
a = 0.23; b = -2; c = -6.4;
Δ = b2-4ac
Δ = -22-4·0.23·(-6.4)
Δ = 9.888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{9.888}}{2*0.23}=\frac{2-\sqrt{9.888}}{0.46} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{9.888}}{2*0.23}=\frac{2+\sqrt{9.888}}{0.46} $
| 8a+20(1/36)=1 | | (5/6)x-1/3=-2 | | 0.18t2-2t-5.2=0 | | 3x-7x-15=-4x+7-15 | | 5n-3=n-11 | | 3y-5=4y-2+4 | | 2x+8.5=23.5 | | 6+7x4-2x8=36 | | 0.1x^2+0.6x+1=10 | | 10p-40=3p+9 | | 2n+1=153 | | 6+2x=32-2x | | 0.11=(0.5+x)×x | | -2k-12=10 | | 29x+92=29x-1129x+92=29x−11 | | 29x−29=29x−11 | | 12x+12=13x-1212x+12=13x−12 | | 12x+12=13x+1212x+12=13x+12 | | -1+5u=-21 | | 3x/4-1=2x-3 | | 1/39c-20=7/3 | | 2(x+2)=7(x-6) | | t-1/3=3/4 | | 6x+50=8x | | 3/5q=-5 | | 42=20t-4.9t^2 | | 6^4x=5^(-4x+2) | | −3x=42 | | (5x+4)(x+1)=2x(3x+5)-(x^2+x-4) | | x=−50 | | 5x=−50 | | 18x(x+1=0 |