0.25x+2=-5/8x-5

Simple and best practice solution for 0.25x+2=-5/8x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.25x+2=-5/8x-5 equation:



0.25x+2=-5/8x-5
We move all terms to the left:
0.25x+2-(-5/8x-5)=0
Domain of the equation: 8x-5)!=0
x∈R
We get rid of parentheses
0.25x+5/8x+5+2=0
We multiply all the terms by the denominator
(0.25x)*8x+5*8x+2*8x+5=0
We add all the numbers together, and all the variables
(+0.25x)*8x+5*8x+2*8x+5=0
We multiply parentheses
0x^2+5*8x+2*8x+5=0
Wy multiply elements
0x^2+40x+16x+5=0
We add all the numbers together, and all the variables
x^2+56x+5=0
a = 1; b = 56; c = +5;
Δ = b2-4ac
Δ = 562-4·1·5
Δ = 3116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3116}=\sqrt{4*779}=\sqrt{4}*\sqrt{779}=2\sqrt{779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-2\sqrt{779}}{2*1}=\frac{-56-2\sqrt{779}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+2\sqrt{779}}{2*1}=\frac{-56+2\sqrt{779}}{2} $

See similar equations:

| 6z+10=3z+55 | | 2t2=72 | | 3=1/4x-3 | | 2n^2+10-28=0 | | 4x-7.2=x+2.3 | | -3.6e-7.2=12.7-6.1e.1 | | –7u+9=–10u | | 5+1.5x=23 | | n-36.1=23.1 | | 2x​+(​14)+​(x​38)=180 | | 3x+4(x-8)-x=3/4(10x+15) | | 2x-1-2x-1=10x-12 | | 0.3c+1.5=0.4-0.8 | | 0=1x-7 | | R=0.8220−y | | 33/4(2a−6)+12=25(3a+20) | | 3x–(2x+4)=19 | | 6n+3(5n+6)=4(1+5n) | | -27=-3+4w | | x-3-x/5=3 | | 2y=6(-6)+56 | | 7.9x–2–3.2x–10=2.8+x | | 3(y+–48)=-81 | | 13.21-10.1=r | | 5-x+x=-5-2x | | 6+a=-29 | | -10x+9x=12 | | /3/4(2a-6)+1/2=2/5(3a+20) | | 2x+6=3x−8. | | 36^(1-4x)=0 | | –81=3(y+–48) | | 5/7z=25/35 |

Equations solver categories