If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.25x-2=-6+5/12x
We move all terms to the left:
0.25x-2-(-6+5/12x)=0
Domain of the equation: 12x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
0.25x-(5/12x-6)-2=0
We get rid of parentheses
0.25x-5/12x+6-2=0
We multiply all the terms by the denominator
(0.25x)*12x+6*12x-2*12x-5=0
We add all the numbers together, and all the variables
(+0.25x)*12x+6*12x-2*12x-5=0
We multiply parentheses
0x^2+6*12x-2*12x-5=0
Wy multiply elements
0x^2+72x-24x-5=0
We add all the numbers together, and all the variables
x^2+48x-5=0
a = 1; b = 48; c = -5;
Δ = b2-4ac
Δ = 482-4·1·(-5)
Δ = 2324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2324}=\sqrt{4*581}=\sqrt{4}*\sqrt{581}=2\sqrt{581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-2\sqrt{581}}{2*1}=\frac{-48-2\sqrt{581}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+2\sqrt{581}}{2*1}=\frac{-48+2\sqrt{581}}{2} $
| -7(2d+5)-2=5 | | 365+18d=185 | | 9w+1-2(-6w-6)=3(w-1) | | 43x=-160 | | -8(1+2b)=104 | | .79x+24=0+1.19 | | 0=16t^2+80t+32 | | 9(3m+10)=-45 | | -4(v+2)=3v-4+2(4v+1) | | 0=16t^2+100t+35 | | 4(w-6)-9=-5(-3w+5)-5w | | 26-1f=40 | | 2^(4x-1)=128 | | 1.5y=-4.5 | | 9w+(-10)=-37 | | 6u-34=8(u-5) | | 8-2(2p-3)=6-(p+6) | | 8x+2x-5=12x-6 | | 8(9-k)=24 | | 5(y-1)=3y-3 | | 64w+48=-6w-22 | | 6(x+3)=25 | | -10x-2=4 | | 4^6x−5=3^9x−2 | | c/2+81=2F | | 10(3y+17)=-100 | | c/2+81=2 | | 2x=13=5x+7 | | 6z+5=5z+20 | | b-5+3b=11 | | (19x+1)+(13x-5)=90 | | 15x=12(x-3( |