0.2x(x+1)=22+x

Simple and best practice solution for 0.2x(x+1)=22+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.2x(x+1)=22+x equation:



0.2x(x+1)=22+x
We move all terms to the left:
0.2x(x+1)-(22+x)=0
We add all the numbers together, and all the variables
0.2x(x+1)-(x+22)=0
We multiply parentheses
0x^2+0x-(x+22)=0
We get rid of parentheses
0x^2+0x-x-22=0
We add all the numbers together, and all the variables
x^2-22=0
a = 1; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·1·(-22)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{22}}{2*1}=\frac{0-2\sqrt{22}}{2} =-\frac{2\sqrt{22}}{2} =-\sqrt{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{22}}{2*1}=\frac{0+2\sqrt{22}}{2} =\frac{2\sqrt{22}}{2} =\sqrt{22} $

See similar equations:

| 10-7w=-9w | | 2(x-5)0=x+5 | | -3(4x+2(=18 | | 8x-12=14x-12 | | 5x=6=4x^2 | | -2v+2=10-v | | -4/3x+11/3x=49/18 | | X+46x-2=12 | | -4+5b=6b | | 2b-10=-8b | | (x+8)(x=3) | | 8x-12=7x-5 | | 5/6r=43/8 | | 6x+3Y=20 | | 2b−10=-8b | | 4x^2-x+22=0 | | 3(-5x-10)=15 | | 7j=9-2j | | 4(4y-16)-4y=-16 | | 8-0.5(x=3)=0.25(x-1) | | x/4+16=40 | | 12(x-3)=9x-20 | | x+0.12x=50 | | 20+3x=28 | | F(-5)=7-3x | | X5-71=x+5=+5)+5 | | 4x+20=4x=5x | | x^2-5-x=0 | | √(x^2-4)-x=1 | | 7x-92+6x+12=108 | | w=19+2/7 | | w=135/7 |

Equations solver categories