0.2x+0.4x-2=-2/5x

Simple and best practice solution for 0.2x+0.4x-2=-2/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.2x+0.4x-2=-2/5x equation:



0.2x+0.4x-2=-2/5x
We move all terms to the left:
0.2x+0.4x-2-(-2/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.6x-(-2/5x)-2=0
We get rid of parentheses
0.6x+2/5x-2=0
We multiply all the terms by the denominator
(0.6x)*5x-2*5x+2=0
We add all the numbers together, and all the variables
(+0.6x)*5x-2*5x+2=0
We multiply parentheses
0x^2-2*5x+2=0
Wy multiply elements
0x^2-10x+2=0
We add all the numbers together, and all the variables
x^2-10x+2=0
a = 1; b = -10; c = +2;
Δ = b2-4ac
Δ = -102-4·1·2
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{23}}{2*1}=\frac{10-2\sqrt{23}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{23}}{2*1}=\frac{10+2\sqrt{23}}{2} $

See similar equations:

| -7x+5(8x-4)=x-20 | | -13-7x=-x-8-7x | | 5x–13=4x+x | | 3n+4-2=17 | | 5x-2.5+6x-3= | | p/6-5=13 | | -2y+13=27 | | –4u=–8u+8 | | 18q-4q-10q=8 | | x​ +4=7 | | 8x=9x−9 | | 18q-14=20q | | s155=4 | | n8+1=5 | | 2m+20+10=10 | | 5x+(-10)+x=(-4x)+10 | | 13p-p+4p-p-13p=12 | | 9-2a=-3-4a | | y-30=9* | | 5x-2x=6x+6 | | 2k-2k+3k=3 | | A+2.4=7.8a= | | -19-11r=-14r+16+13 | | -5p-5(2+7p)=-130 | | m9=12 | | -7+9f+10=-5+10f | | 5/6w=1 | | -24.6=6c | | 26=13r | | -7-8v=-6v+7 | | 1.4h+1.4-4.8=9.2 | | x^2+13x+14=−7 |

Equations solver categories