0.4x+10=3/5x+12=

Simple and best practice solution for 0.4x+10=3/5x+12= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.4x+10=3/5x+12= equation:



0.4x+10=3/5x+12=
We move all terms to the left:
0.4x+10-(3/5x+12)=0
Domain of the equation: 5x+12)!=0
x∈R
We get rid of parentheses
0.4x-3/5x-12+10=0
We multiply all the terms by the denominator
(0.4x)*5x-12*5x+10*5x-3=0
We add all the numbers together, and all the variables
(+0.4x)*5x-12*5x+10*5x-3=0
We multiply parentheses
0x^2-12*5x+10*5x-3=0
Wy multiply elements
0x^2-60x+50x-3=0
We add all the numbers together, and all the variables
x^2-10x-3=0
a = 1; b = -10; c = -3;
Δ = b2-4ac
Δ = -102-4·1·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{7}}{2*1}=\frac{10-4\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{7}}{2*1}=\frac{10+4\sqrt{7}}{2} $

See similar equations:

| 4/5x+2=300 | | d/88=88,000 | | 4xx-5=180 | | 48=8•r | | -89/12=c | | 3y-8=6-y | | 5x+18=9x | | -9/b=45 | | (y÷3)+6=12 | | a/3=-30 | | V=3(2+(h)^(1/2))^6-192 | | V=3(2+(h)^1/2)^6-192 | | 5x+36=18+9x | | d/4=18/4.8 | | Y=-1,5x+1 | | 4.82y=156.711 | | 16x+100=180 | | 14/x=8/18 | | –7c=–6c+6 | | 2(2x+2)=2(x-2) | | 5=−6x+39x= | | 5=−6x+39;x= | | 3h+5+1=52 | | 5x+20=100=10x | | x^2−5=31 | | 240=8q | | 2(3x=12) | | 76÷v=4 | | 20+21+42+29+x+14+x-10=360 | | 44=y×2 | | x=11, | | 5(x+3)=7(x-5) |

Equations solver categories