0.4x+3=-1/3x-5

Simple and best practice solution for 0.4x+3=-1/3x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.4x+3=-1/3x-5 equation:



0.4x+3=-1/3x-5
We move all terms to the left:
0.4x+3-(-1/3x-5)=0
Domain of the equation: 3x-5)!=0
x∈R
We get rid of parentheses
0.4x+1/3x+5+3=0
We multiply all the terms by the denominator
(0.4x)*3x+5*3x+3*3x+1=0
We add all the numbers together, and all the variables
(+0.4x)*3x+5*3x+3*3x+1=0
We multiply parentheses
0x^2+5*3x+3*3x+1=0
Wy multiply elements
0x^2+15x+9x+1=0
We add all the numbers together, and all the variables
x^2+24x+1=0
a = 1; b = 24; c = +1;
Δ = b2-4ac
Δ = 242-4·1·1
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{143}}{2*1}=\frac{-24-2\sqrt{143}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{143}}{2*1}=\frac{-24+2\sqrt{143}}{2} $

See similar equations:

| 6x−(x+5)=3x+(x−8) | | t*4-8=16 | | a*6+6=14 | | C=50+0.9*y | | 5*(1+x)=6x+3 | | 5*(1+x)=6+3 | | 5=x*0.8 | | 3x+6=5*(2-x) | | 23+7x=8+10x | | 3x^2-2x^2-15x-14x=0 | | 5x+7=2x–11 | | 2. 5x+7=2x–11 | | 7x-3x=16-4 | | 10+x=1+4x | | 5x^2-2x+7=-1 | | (X^2+x)x=2x+X^3-1 | | 2.1y+14=18.2 | | 1.2k-80=3.2k | | -13(d=1)=-169 | | 2.5y-15=35 | | 5(x-2)+6=-9 | | 4-2(3x-2)=-6 | | 2x+x÷2+x÷4+1=2 | | y-2/4=10/2 | | 3-5(4x-6)=-2 | | 50-2q=20+4q | | 4(x-3)=30-2x | | a/3+6=8 | | 7-4(3x-5)=-5 | | 9x+2=5x+42 | | 7(x+3)=-1 | | 6x*5x=30x |

Equations solver categories