0.4x-3/1.5x+9=-75

Simple and best practice solution for 0.4x-3/1.5x+9=-75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.4x-3/1.5x+9=-75 equation:



0.4x-3/1.5x+9=-75
We move all terms to the left:
0.4x-3/1.5x+9-(-75)=0
Domain of the equation: 1.5x!=0
x!=0/1.5
x!=0
x∈R
We add all the numbers together, and all the variables
0.4x-3/1.5x+84=0
We multiply all the terms by the denominator
(0.4x)*1.5x+84*1.5x-3=0
We add all the numbers together, and all the variables
(+0.4x)*1.5x+84*1.5x-3=0
We multiply parentheses
0x^2+84*1.5x-3=0
Wy multiply elements
0x^2+84x-3=0
We add all the numbers together, and all the variables
x^2+84x-3=0
a = 1; b = 84; c = -3;
Δ = b2-4ac
Δ = 842-4·1·(-3)
Δ = 7068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7068}=\sqrt{4*1767}=\sqrt{4}*\sqrt{1767}=2\sqrt{1767}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-2\sqrt{1767}}{2*1}=\frac{-84-2\sqrt{1767}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+2\sqrt{1767}}{2*1}=\frac{-84+2\sqrt{1767}}{2} $

See similar equations:

| X-5(x-1)=2-4x | | -6-8x=-6 | | x/5-1.4=0.2 | | 13-6x=-5 | | 8a-12=-12+10a-2 | | -c-24=26 | | (9x-5)/2-(3-2x)/3-(8x-2)/4=2 | | 220=15x+24 | | 65/b=8 | | 12/9x-8=3/7 | | V=3.14r^24 | | 0,7(3x-0.2)=0.3(0.8-2x) | | 9x^2-10x=9x^-6 | | 2x3-6x+1=0 | | 3x+20=x+56 | | A(n)=A(n-1)-2 | | 10×(x-3)=7x-3-3 | | -16x+24=14x+16 | | x^-3=0,125 | | 2x+25=x-32 | | -8x+312=-16x | | n/2.1=3.6 | | x+22/3=-15/6 | | k/15=-19 | | -17r=-221 | | 0.4x7=2.8 | | 4=-4p | | (3+5)*2y=(5*8)-(2*4 | | 7k+1=5 | | 3.333(1+2x)=5.5(2x+1) | | 2x-7=-19x= | | x2-9x-20=0 |

Equations solver categories